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Background: Procambarus clarkii produces high-quality, delicious meat that is high in protein, low in fat, and rich
in calcium and phosphorus. It has become an important aquatic resource in China. Our objectives are (i) to
analyze the level of genetic diversity of P. clarkii populations; (ii) to explore the genetic differentiation (Gst);
and (iii) to propose appropriate strategies for the conservation.

Results: In this study, Shannon's index (I) and Nei's gene diversity index (H) for P. clarkii were high (I = 0.3462 and H
= 0.2325 on average and I = 0.6264, H = 0.4377 at the species level) based on the SSR markers. The expected
heterozygosity value of 17 microsatellite loci in 25 crayfish populations was 0.9317, the observed heterozygosity
value was 0.9121, and the observed number of alleles per locus was 2.000; and the effective number of alleles per
locus was 1.8075. Among the P. clarkii populations, the inbreeding coefficient within populations (Fis) was 0.2315,
overall inbreeding coefficient (Fit) was 0.4438, genetic differentiation coefficient among populations (Fst) was
0.3145 and gene differentiation (Gst) was 0.4785 based on SSR analyses. The cluster analysis results obtained by
unweighted pair-group method with arithmetic mean (UPGMA) analysis, principal coordinate analysis (PCoA) and
STRUCTURE analysis were similar. A mantel test showed that the isolation-by-distance pattern was not significant.
Conclusions: The high Gst among P. clarkii populations is attributed to genetic drift and geographic isolation. The
results indicated that more P. clarkii populations should be collected when formulating conservation and
aquaculture strategies.

How to cite: Liu F, Qu Y-K, Geng C, et al. Analysis of the population structure and genetic diversity of the red swamp
crayfish (Procambarus clarkii) in China using SSR markers. Electron ] Biotechnol 2020;47. https://doi.org/10.1016/j.
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1. Introduction

clarkii has recently become a popular freshwater aquaculture species
due to its high market value and consumption demand in inland

Procambarus clarkii is commonly known as the freshwater crayfish.
Originating in North America, it has been introduced to Southeast Asia
and other regions since the 1930s. It is widely distributed in China and
has established natural populations. P. clarkii is an important
freshwater crayfish species in China's natural waters. It is found in
Jiangsu, Zhejiang, Anhui, Shanghai, and other provinces and cities. P.
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China [1]. Because of its fast growth, convenient management and
high yield, it has good aquaculture potential. However, with the
continuous increase in fishing, the spread of disease and the pollution
of its living environment, its biological resources are constantly
threatened. Therefore, to promote the sustainable development of the
P. clarkii industry, studying its genetic diversity has become an
important task.

Genetic diversity means the product of species' genetic variation and
adaptation ability to the environment in the long-term evolutionary
process. It is an important basis for species' sustainable survival and
development in the long-term complex process of habitat change.
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Accurate evaluation of genetic diversity of germplasm resources can
provide predictive guidance for parent selection, progeny genetic
variation and heterosis prediction, and improve breeding efficiency.
Therefore, understanding genetic structure and genetic differentiation
of germplasm resources can help to protect and utilize germplasm
resources more effectively [2]. Molecular marker technology is widely
used in the field of biological resource protection [2,3]. Many
techniques can be used to detect genetic diversity based on
polymerase chain reaction (PCR). Simple sequence repeats (SSRs) are
among the most effective markers for studying genetic diversity and
differentiation among populations [4,5] and can be more informative
than other types of markers because they are codominant. In addition,
the heterozygosity of polymorphic loci detected by SSRs was higher
than that detected by some other markers [6]. In fact, SSRs are a DNA
fingerprinting technique, which is close to an ideal marker system for
genetic diversity analysis and population genetics research [7,8,9,10].
SSR markers have been applied in Meretrix petechialis [11], Prunus
sibirica L. [12], Ruditapes philippinarum [13], Juniperus thurifera L. [14],
Crassostrea gigas [15], Mytilus coruscus [16], and Ligumia nasuta [8].

Some microsatellite loci are available in P. clarkii in some local areas
[17], and in recent years, molecular research using microsatellite
biology has been carried out in P. clarkii. Wang et al. [18] used
microsatellite primers to study the genetic diversity of 4 geographical
populations of P. clarkii, Peng et al. [19] used 7 pairs of microsatellite
primers to analyze the genetic diversity of 3 geographical populations,
and Xing et al. [20] used 8 microsatellite markers to analyze the
genetic diversity of P. clarkii in 8 areas. Therefore, SSRs are considered
appropriate molecular tools for analyzing population structure and
genetic diversity between and within P. clarkii populations. These
studies on genetic diversity using microsatellite sequences were
mostly only concentrated in Hubei, Jiangsu and other major P. clarkii-
breeding provinces; thus, more polymorphic microsatellites are still
required in this species to obtain a better understanding of the P.
clarkii genetics in China.

To the best of our knowledge, there are no reports on genetic
diversity analysis of P. clarkii populations in most areas of China. In the
present study, SSR markers were employed (i) to assess the genetic
diversity level within/among P. clarkii populations; (ii) to explore the
genetic differentiation (Gst) among these populations; and (iii) to
discuss the appropriate strategies for conservation of P. clarkii
germplasm resources.

2. Materials and methods
2.1. Animals of P. clarkii

A total of 375 P. clarkii individuals were collected from 25
populations, representing the main distribution areas of P. clarkii in
China. Table 1 and Fig. 1 show the detailed locations of the research
populations based on GPS positioning. All samples were from wild
populations. All animals of P. clarkii came from five regions:
Northwest China (WW, ZW, BT, LF and LY); Qinling and the Huaihe
River (HZ and JN); North China and Northeast China (HS, NH, MY and
PJ]); the Yangtze River basin (YZ, CM, HF, JX, NC, YY, QJ, ZX and CD);
and South and Southwest China (QN, DL, GL, ZQ and QZ) (Table 1 and
Fig. 1). Each P. clarkii was ice compressed for 10 min to maintain
hypothermic anesthesia and then used MS-222 for next anesthesia.
Fresh tail muscle was collected, dried immediately in silica gel, and
then stored at -70°C for later processing.

2.2. DNA extraction and PCR amplification

Total P. clarkii genomic DNA was extracted according to the protocol
of Liu et al. [21] and Sambrook and Russell [22]. DNA quality and
quantity were determined using 1.5% agarose gel electrophoresis and

Table 1
The P. clarkii populations used in the present study.
Population Sample Location Longitude Latitude
code size (E) (N)
ww 15 Wuwei, Gansu Province, China 102.85 38.38
W 15 Zhongwei, Ningxia Hui 105.91 36.81
Autonomous Region, China
BT 15 Baotou, Inner Mongolia 109.80 40.76
Autonomous region, China
LF 15 Linfen, Shanxi Province, China 110.69 36.45
HZ 15 Hanzhong, Shaanxi Province, China 107.12 33.05
LY 15 Luoyang, Henan Province, China 112.75 34.63
HS 15 Hengshui, Hebei Province, China 115.63 37.65
NH 15 Ninghe, Tianjin City, China 117.58 39.32
MY 15 Miyun, Beijing City, China 116.99 40.53
PJ 15 Panjing, Liaoning Province, China 122.13 40.98
JN 15 Jining, Shandong Province, China 117.19 34.77
YZ 15 Yangzhou, Jiangsu Province, China  119.42 32.74
CM 15 Chongming, Shanghai City, China 121.57 31.71
HF 15 Hefei, Anhui Province, China 117.33 31.57
X 15 Jiaxing, Zhejiang Province, China 120.32 30.34
NC 15 Nanchang, Jiangxi Province, China  116.35 28.39
YY 15 Yiyang, Hunan Province, China 11238 28.86
QJ 15 Qianjiang, Hubei Province, China 112.81 30.50
ZX 15 Zhongxian, Chongqing City, China  108.07 30.33
cD 15 Chengdu, Sichuan Province, China  103.74 30.73
QN 15 Qiannan, Guizhou Province, China  106.69 25.40
DL 15 Dali, Yunnan Province, China 100.18 25.38
GL 15 Guilin, Guangxi Province, China 110.38 25.18
ZQ 15 Zhaoqing, Guangdong Province, 11235 23.14
China
QZ 15 Quanzhou, Fujian Province, China 118.51 24.96

a spectrophotometer. The samples of P. clarkii DNA were stored at
-20°C for later analysis.

2.3. SSR-PCR amplification

The SSR primers (Table 2) used in this study were the same as those
in Li et al. [17]. The final reaction mixture containing 0.1 uM forward and

Fig. 1. The locations of P. clarkii populations sampled in this study were assigned to three
geographical regions, as described in Table 1.
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Table 2
Primers used for the molecular analyses.

SSR

Locus Primer Ta (°C) SSR motif Allele size (bp) No. of alleles Accession number

PclG02 F:CTCCCCATGCACTCTGGCTCTGT 66 (GATA)3GAGAA(GATA)s 216-224 3 AF290919
R:TGGCGAATTTTGCCTGTTTCTGTC

PclG03 F:CTCTCCACCAGTCATTTCTT 52 (TCTA)20 216-420 4 AF290920
R:AAGCTTACAATAAATATAGATAGAC

PclG04 F:TATATCAGTCAATCTGTCCAG 54 (TCTA)s...(TCTA),...(TCT 170-290 4 AF290921
R:TCAGTAAGTAGATTGATAGAAGG A)sg... (TCTA),

PclGO7 F:CCTCCCACCAGGGTTATCTATTCA 63 (TCTA)g 100-160 4 AF290922
R:GTGGGTGTGGCGCTCTTGTT

PclG08 F:ACGATAAATGGATAGATGGATGAA 62 (GATA) 16 148-220 5 AF290923
R:CCGGGTCTGTCTGTCTGTCA

PclG09 F:TATGCACCTTTACCTGAAT 60 (TCTA)14 80-160 4 AF290924
R:TGTTGGTGTGGTCATCA

PclG10 F:TGCTCACGCAAACTTGTATTCAGT 54 (TAGA),TA(TAGA) 6 90-176 3 AF290925
R:CAATGGTCCTTGATTTGGTGTTCT

PclG13 F:CTCTCCTGGCGCTGTTATTTAGC 62 (TCTA)12 130-150 2 AF290926
R:TGAAGAGGCAGAGTGAGGATTCTC

PclG15 F:GGCGTGACGCCAACGTGTCTT 70 (TATC)2TGTC(TATC),,TA 150-185 3 AF290927
R:GGCTGGCCACTTTGTTAGCCTGAG TT(TATC)3

PclG16 F:CTCGGAATGTCCACCTGAGA 54 (TCTA)1sTCTC(TATC)5 80-160 4 AF290928
R:TCATTATGGATTTTGTCAATCTAT

PclG17 F:GTCGGGAACCTATTTACAGTGTAT 57 (TCTA)14 156-190 4 AF290929
R:AAGAGCGAAGAAAGAGATAAAGAT

PclG27 F:AATCTTAAGATCATGAAAAAGGTA 57 (TATC)4CATC(TATC)g 80-150 6 AF290932
R:TTTAAGGAACGTATAAGAAAAGAC

PclG28 F:CTCGGCGAGTTTACTGAAAT 60 (GATA)2>(GA)s 210-270 3 AF290933
R:AGAAGAAAGGGATATAAGGTAAAG

PclG29 F:GAAAGTCATGGGTGTAGGTGTAAC 65 (TATC)o 95-165 3 AF290934
R:TTTTTGGGCTATGTGACGAG

PclG33 F:.TTCGAGGCGTTGCTGATTGTAAGT 68 (GT)xy 120-180 5 AF290936
R:CAAGGAAGCGTATAGCCGGAGTCT

PclG37 F:TAAATAAGTGGCGTGTAAGACGAG 66 (CA)4CG(CA)15CG 80-180 7 AF290939
R:TAACTAAGCCAGGGTGGTCTCCAG (CA)23

PclG48 F:CTGTTGGTGATTTCCGTCAATTTT 66 (CA)12 146-190 2 AF290941

R:AGATTCAACGCTGTGTTCCTGATC

reverse primers, 0.15 mM MgCl,, template DNA (approximately 10 ng),
0.05 mM dNTPs, 0.8 U of Tag DNA polymerase, and 10x PCR Buffer
(Takara Biomedical Technology (Beijing) Co., Ltd., Beijing, China) was
used for amplification. The amplifications were performed by a
Thermocycler PTC 200™ Programmable Thermal Controller (Bio-Rad,
USA) as follows: first, one cycle of 5 min at 95°C; second, 36 cycles of
50 s at 95°C, 40 s of annealing at the respective primer annealing
temperatures, and then 50 s of elongation at 72°C; and third, a final
extension of 4 min at 72°C. The PCR products were analyzed by 1.5%
agarose gel electrophoresis. A DNA labeling (DL2000; Takara
Biomedical Technology (Beijing) Co., Ltd., Beijing, China) marker was
used as a molecular size ladder. The experiments were repeated three
times, and the data were analyzed using only clear and consistent
bands.

2.4. Statistical analysis

The SSR primer banding patterns were scored as absent (0) or
present (1). POPGENE version 1.32 [23] was used to calculate the
genetic diversity and distance matrix, Shannon's information index (I)
[24], Nei's genetic diversity (H); observed heterozygosity (Ho);
expected heterozygosity (He); Hardy-Weimberg equilibrium (HWE)
[25], gene differentiation (Gst) and gene flow (Nm). NTSYS-pc version
2.10 [26] was used to perform a Mantel test between Nei's genetic
distance and geographic distance. The inbreeding coefficient (Fis), the
total inbreeding coefficient (Fit) and the genetic differentiation
coefficient (Gst) among populations were calculated using arlequin
3.5.2.2 and the frequency of null alleles (Py) was calculated using
GenePop 4.7. Numerical Taxonomy Multivariate Analysis System
(NTSYS-pc) software (version 2.10) [27] was used to construct a two-
dimensional array by principal coordinate analysis (PCoA) and a

UPGMA tree based on the genetic distance matrices generated. Finally,
the STRUCTURE (version 2.3.4) program was used to test for genetic
admixture across species boundaries. The population structure of SSRs
was analyzed by the Bayesian analysis method. The number of
populations was estimated as described by Evanno et al. [28] using the
STRUCTURE HARVESTER software [29].

3. Results
3.1. Genetic relationships and genetic diversity in P. clarkii

Seventeen pairs of SSR primers were used to assess the genetic
relationships and genetic diversity of 25 P. clarkii populations
(Table 2). In total, 60 bands were observed in the SSR products, and
all 60 (100.00%) were polymorphic among the P. clarkii
populations. The highest and the lowest genetic diversities of P.
clarkii were observed in populations NC (H = 0.3191, [ = 0.4708)
and JN (H = 0.1367, I = 0.2003), respectively (Table 3). The mean
within-population diversity of P. clarkii was low (H = 0.2325,1 =
0.3462), but P. clarkii exhibited high diversity at the species level
(H = 04377 I, I = 0.6264) based on SSRs. The expected
heterozygosity (He) value of 17 microsatellite loci in 25 P. clarkii
populations was 0.9317, the observed heterozygosity (Ho) value
was 0.9121, and the observed number of alleles per locus was
2.000; and the effective number of alleles per locus was 1.8075
(Table 3). Hardy Weinberg equilibrium deviation index (HWE) test
showed that 25 populations did not show heterozygous deletion
sites (Table 4). Table 4 shows that pclg09 is monomorphic in the
ZW population, pclg10, pclg17 and pclg28 are monomorphic in the
HF population, pclg13 is monomorphic in the WW and HF
population, and the rest of the loci are polymorphic in each
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H

Ho

He

I

62

Table 3

Genetic diversity within P. clarkii populations based on SSR markers.
Population PPB (%) Ao Ae
Ww 68.33 1.6833 + 0.4691 1.3417 + 03263
W 55.00 1.5500 + 0.5017 1.2779 £ 03206
BT 60.00 1.6000 + 0.4940 1.2801 + 03194
LF 56.67 1.5667 + 0.4997 1.2914 + 03340
HZ 4833 1.4833 + 0.5039 1.2730 + 03412
LY 65.00 1.6500 + 0.4810 1.3510 £ 03510
HS 41.67 1.4167 + 0.4972 1.2580 + 0.3645
NH 61.67 1.6167 + 0.4903 1.3918 + 0.4044
MY 63.33 1.6333 + 0.4860 1.4246 + 03947
PJ 58.33 1.5833 + 0.4972 1.3773 £ 03938
IN 35.00 1.3500 + 0.4810 1.2419 + 03698
YZ 53.33 1.5333 + 0.5031 1.3770 £ 04171
™M 63.33 1.6333 + 0.4860 1.4127 £ 0.4078
HF 75.00 1.7500 + 0.4367 1.4842 + 0.3959
X 81.67 1.8167 + 0.3902 1.5222 + 03680
NC 83.33 1.8333 + 0.3758 1.5509 + 0.3369
YY 81.67 1.8167 4+ 0.3902 1.5437 + 0.3660
qQJ 80.00 1.8000 + 0.4034 1.4993 + 03782
ZX 78.33 1.7833 4+ 0.4155 1.4327 + 03649
(@] 81.67 1.8167 + 1.4183 1.4183 + 0.3599
QN 71.67 1.7167 £ 0.4544 1.4599 + 0.4024
DL 63.33 1.6333 4 0.4860 1.4365 + 0.4018
GL 66.67 1.6667 + 0.4754 1.4482 + 0.4100
Q 66.67 1.6667 + 0.4754 1.4295 + 0.4073
Qz 73.33 1.7333 4 0.4459 1.5212 + 03937
Mean 65.33 1.6533 1.4018
Species level 100% 2.0000 = 0.0000 1.8075 + 0.2086

0.2129 £ 0.1780
0.1738 + 0.1803
0.1758 £+ 0.1782
0.1793 £ 0.1849
0.1642 + 0.1928
0.2123 £ 0.1892
0.1490 + 0.1986
0.2218 £+ 0.2112
0.2421 £ 0.2079
0.2164 £ 0.2072
0.1367 £ 0.1999
0.2090 + 0.2190
0.2331 £ 0.2105
0.2734 £+ 0.2038
0.2993 + 0.1871
0.3191 £ 0.1725
0.3097 £ 0.1854
0.2869 + 0.1891
0.2564 + 0.1854
0.2502 £ 0.1822
0.2598 + 0.2061
0.2463 + 0.2116
0.2509 + 0.2125
0.2414 £+ 0.2127
0.2916 + 0.2028
0.2325

0.4377 £+ 0.0808

0.3268 + 0.0872
0.3319 4 0.1127
0.3628 + 0.1285
0.3927 + 0.1842
0.3877 £+ 0.1926
0.3987 4+ 0.1134
0.4125 + 0.1827
0.4200 + 0.1978
0.3987 + 0.1276
0.4102 £+ 0.1276
0.4148 + 0.7568
0.4756 + 0.2317
0.6728 + 0.2126
0.4512 4+ 0.1768
0.6517 + 0.1681
0.4409 + 0.1128
0.7512 4+ 0.1687
0.6814 + 0.1126
0.6812 + 0.1187
0.6545 + 0.2300
0.6578 + 0.1989
0.5825 + 0.1632
0.5521 4+ 0.1782
0.7266 + 0.2219
0.7718 £+ 0.2892
0.5203

0.9121 £+ 0.2976

0.5612 + 0.1231
0.5287 4 0.1345
0.5629 + 0.1827
0.5928 + 0.1672
0.5671 £+ 0.1874
0.5921 4+ 0.1763
0.6213 £+ 0.2124
0.6161 + 0.2316
0.6078 + 0.2012
0.5873 £+ 0.2145
0.6305 + 0.2124
0.6254 4+ 0.2136
0.6896 + 0.1728
0.4132 £+ 0.1345
0.6023 + 0.1872
0.5419 + 0.1827
0.7219 £ 0.1565
0.6432 + 0.1138
0.7218 £+ 0.1988
0.7432 £+ 0.1987
0.6829 + 0.1126
0.5923 + 0.1985
0.5988 + 0.1892
0.7328 £+ 0.1825
0.7819 + 0.2436
0.6224

0.9317 £+ 0.3415

0.3287 + 0.2568
0.2681 + 0.2651
0.2737 £+ 0.2595
0.2754 £+ 0.2689
0.2474 £ 0.2908
0.3231 £+ 0.2712
0.2215 £ 0.2852
0.3278 £+ 0.2970
0.3564 + 0.2948
0.3207 £ 0.2945
0.2003 + 0.2865
0.3045 + 0.3093
0.3442 + 0.2953
0.4028 + 0.2823
0.4425 + 0.2579
0.4708 + 0.2403
0.4558 + 0.2555
0.4266 + 0.2598
0.3887 + 0.2559
0.3830 + 0.2491
0.3837 + 0.2860
0.3606 + 0.2989
0.3680 + 0.2969
0.3553 £ 0.2970
0.4253 + 0.2832
0.3462

0.6264 + 0.0918

Note: PPB: Percentage of polymorphic bands; Ao: Observed number of alleles per locus; Ae: Effective number of alleles per locus; H: Nei’s gene diversity (1979); Ho: observed

heterozygosity; He: expected heterozygosity; I: Shannon’s information index.

population. HWE deviation index (d) test showed that there were
more heterozygous deletion sites in WW, ZW and HF3 populations,
15, 11 and 13, respectively, and heterozygous deletion sites in
other populations. The frequency of invalid alleles was between
0.053 and 0.276 (Table 5).

Among the P. clarkii populations, the inbreeding coefficient within
populations (Fis) was 0.2315, overall inbreeding coefficient (Fit) was
0.4438, genetic differentiation coefficient among populations (Fst) was
0.3145 and Gst was 0.4785 based on SSR analyses. The Nm was 0.5450
in P. clarkii populations based on SSR analysis. These data indicate
limited gene exchange among populations of P. clarkii (Table 6). The
Gst and Nm among pairs of populations were shown in Table 7. Nei's
genetic distance in P. clarkii ranged from 0.0491 (CM vs. HF) to 0.5655
(ZW vs. QZ) based on POPGENE analysis of SSRs (Table 8).

3.2. Phylogenetic analysis

The UPGMA tree clustered all populations into five groups based on
Nei's genetic distance calculated with SSRs (Fig. 2). Populations WW,
ZW, BT, LF and LY formed the first group, which could be divided into
two subgroups: population WW in Gansu Province formed its own
subgroup, and the other subgroup included populations ZW, BT, LF
and LY in Ningxia, Shanxi, and Henan Provinces and the Inner
Mongolia Autonomous Region. Populations HZ and JN from Qinling
and the Huaihe River in Shaanxi and Shandong Provinces formed a
second group. Populations PJ, HS, NH, MY and JN in Liaoning and
Hebei Provinces, Tianjin and Beijing formed a third group. Populations
YZ in Jiangsu Province, CM in Shanghai city, HF in Anhui Province, QJ
in Hubei Province, ZX in Chongqing city, CD in Sichuan Province, NC in
Jiangxi Province, and YY in Hunan Province in the Yangtze River basin
formed a fourth group. The remaining populations, QN in Guizhou
Province, GL and QZ in Guangxi Zhuang Autonomous Region, ZQ in
Guangdong Province, and DL in Yunnan Province, formed a fifth group.

The SSR markers of the 25 populations were subjected to PCoA
(Fig. 3). The results shown in the scatter plot and clustering plot
were consistent and could be divided into five categories. The PCoA

of all 375 individuals in the 25 populations accounted for 44.67%
(axis 1) and 27.15% (axis 2) of the total variance based on the SSR
analyses, respectively. In the PCoA plot, populations (QN in
Guizhou Province, GL and QZ in Guangxi, DL in Yunnan, and ZQ in
Guangdong) occupied similar positions along axis 1. Seven P. clarkii
populations, namely, YZ in Jiangsu Province, CM in Shanghai city,
HF in Anhui Province, QJ in Hubei Province, ZX in Chongqing city,
CD in Sichuan Province, and NC in Jiangxi Province, also showed
genetic similarity to a similar degree; however, as shown in Fig. 2,
YY in Hunan Province belonged to the Yangtze River basin, but it
was opposite from other regions in the same group. Five
populations (PJ, HS, NH, MY and |JN in Hebei and Liaoning
Provinces, Tianjin and Beijing) also showed genetic similarity to a
similar degree. The other populations, HZ and JN in Qinling and the
Huaihe River region in Shaanxi and Shandong Provinces, occupied a
wide range of positions along axes 1 and 2 and showed genetic
similarity to a similar degree.

The STRUCTURE (version 2.3.4) program was used to calculate
the genetic structure of the P. clarkii samples. Since the species was
initially considered an individual population, individual genotypes
were allocated to the species using STRUCTURE, but the population
size was uncertain. With K = 2, P. clarkii formed two groups. With
K = 4, the populations from North China and Northeast China
formed one group, those from Qinling and the Huaihe River region
formed a second group, the Yangtze River basin population formed
a third group, and populations from South and Southwest China
formed a fourth group (Fig. 4). With K = 5, the populations from
five regions clustered with each other. With K = 6, the same
clustering was observed as with K = 5, but with the population
from the Yangtze River basin divided into two subgroups. When
using the recently developed Evanno method, the K value
supported k = 7-25. Each region showed population subdivision.
The structure simulation through STRUCTURE HARVESTER
confirmed that the highest peak was at K = 3, inferring that 25
populations can incorporate all individuals with the maximum
likelihood (Fig. S1, Table S1). The Mantel test results revealed no



Table 4

Analysis of Hardy-Weinberg equilibrium (HWE) at 17 SSR loci among different populations of P. clarkii.

CcD QN DL GL zQ Qz

ZX

BT LF HZ LY HS NH MY PJ JN YZ M HF X NC

W

G02 0.0428 0.3013 0.0238 0.1192 0.0256 0.2987 0.2156 0.0269 0.0892 0.2528 0.0199 0.0344 0.1118 0.3378 0.0230 0.0221 0.0291

ID
Pci

02717 0.3982 0.0695 0.3982 0.0892 0.1922 0.1830
0.0396 0.0319 0.5942 0.3892 0.5529 0.4319 0.0892

0.0391

G03 04125 0.0218 0.4230 0.0682 0.2126 0.2487 0.3023 0.5821 0.3588 0.0934 0.3720 0.3221 0.0416 0.0294 0.0519 0.5502 0.4819 0.2981

G04 0.5318 0.0636 0.3891

0.0578 0.4782 0.6720 0.3982 0.2987 0.4297 0.0427 0.6173 0.3832 0.4892 0.4329 0.4382

0.5572 0.5132 0.3521

0.3928 0.6342 0.0178 0.0560 0.6029 0.5098 0.392

0.1182 0.3947 0.2827 0.1982 0.3971 0.0392 0.1492 0.3763

03319 0.0960 0.3891

0.1168 0.3270 0.2461

G07 0.1673 0.4137 0.1928 03097 0.3189 0.0192 0.2583 0.1432 0.1782 0.3139 0.3071

0.4872 0.3091 0.2985 0.2901

G08 0.4632 0.3028 0.2423 03928 0.3237 0.4866 0.0608 0.2976 0.5690 0.2790 0.3320 0.5472 0.2839 0.0509 0.2320 0.2500 0.3982 0.2718 0.3082 0.0728 0.2991

G09 0.6156 0.0000 0.7718 0.0894 0.0462 0.1947 0.0724 0.7823 0.032

G10 03132 0.6230 0.2091

0.5589 0.0460 0.6432 0.0782 0.7829 0.7289 0.5892

0.6618 0.0499 0.6437 0.6012 0.0664 0.6710 0.7412 0.0529 0.4981

0.7075 0.0462 0.1426 0.0136 0.2090 0.2682 0.8290 0.0388 0.2873 0.8199 0.0000 0.6728 0.2290 0.0757 0.3199 0.7812 0.0152 0.3197 0.0794 0.0892 0.1872 0.6028

0.2735 0.0314 0.0000 0.0917 0.2012 0.0720 0.2012 0.0982 0.0693 0.2129 0.0727 0.0921 0.0932 0.7191

0.2019 0.2893 0.0574 0.0891

G13 0.0000 0.2416 0.2832 0.0724 0.6992 0.1872 0.0011

G15 0.1672 0.0832 0.0419 03641 0.2619 0.1705 0.0763 0.0505 0.2217 0.2587 0.2240 0.1266 0.3641 0.0754 0.2450 0.0309 0.2079 0.0207 0.4872 0.0694 0.1983 0.3329 0.3981 0.4092 0.2219

G16 0.1254 0.1398 0.1928 0.1119 0.1427 0.1804 0.1389 0.1420 0.1817 0.1297 0.1981

G17 03312 0.0142 .0000

0.1984 0.3982 0.4192 0.2319

0.1981

0.1420 0.2196 0.1382 0.1274 0.0981

0.1628 0.1119 0.1228 0.2521

0.3058 0.1982 0.1905 0.0125 0.0153 0.3155 0.3146 0.1978 0.3068 0.3058 0.0000 0.3129 0.0011 0.1828 0.0092 0.4217 0.0078 0.0296 0.2285 0.2218 0.2018 0.3320

F. Liu et al. / Electronic Journal of Biotechnology 47 (2020) 59-71 63

0.0985 0.1682 0.0984 0.3887 0.4287 0.3389 0.0389

0.4891 0.4075 0.1642 0.0685 0.0982 0.0540 0.4096 0.2070 0.0481 0.1592 0.0527 0.0775 0.4194 0.0791

G27 0.2489 0.1891 0.0732 0.048

0.3189 0.6578 0.6283 0.2642 0.6782 0.7788 0.0000 0.6329 0.2529 0.3129 0.2985 0.6751 0.0341 0.4199 0.2764 0.4187 0.4007 0.6180

G28 0.5612 0.0254 0.2874 0.7788 0.1019 0.3130 0.021

02957 0.2985 0.1206 0.2874 0.1095 0.2273 0.2765 0.3326

03145 0.2590 0.1764 0.3319 0.2638 0.0778 0.2519 0.4052 0.1891

G29 0.1279 0.1892 0.4178 0.2638 0.1998 0.1805 0.0873 0.5051

G33 04318 0.4678 0.4686 03248 0.3056 0.2129 0.5128 0.2892 0.5519 0.3319 0.3152 0.5316 0.3248 0.5205 0.3129 0.2913 03025 0.3319 0.3189 0.6891 0.3129 0.3189 0.1971 0.1683 0.3315

G37 0.2819 0.4072 0.3897 03545 0.3132 0.3020 0.4298 0.5380 0.3984 0.2891
G48 03132 0.1599 0.3139 0.0615 0.3895 03120 0.1829 0.4982 0.1365 0.0921

0.3169 0.3012 0.3545 0.4138 0.3619 0.5540 0.2974 0.5018 0.3782 0.3092 0.6983 0.3192 0.2254 0.2194 0.3294

03819 0.1247 0.0615 0.1508 0.0319 0.2880 0.4194 0.2581

0.0615 0.1932 04552 0.2984 0.4007 0.3882 0.0497

Pc

Pci

Pc

Pci

Pc

Pci

Pci

Pc

Pci

Pci

Pcl

Pc

Pci

Pci

Pci

Pci

Table 5

Frequency of null alleles at 17 SSR loci among populations of P. clarkia.
ID Py ID Pn
PclG02 0.173 PclG16 0.195
PclGO3 0.196 PclG17 0.145
PclG04 0.055 PclG27 0.164
PclGO7 0.078 PclG28 0.079
PclGO8 0.062 PclG29 0.276
PclG09 0.053 PclG33 0.194
PclG10 0.188 PclG37 0.181
PclG13 0.089 PclG48 0.077
PclG15 0.176 Mean 0.140

Note: Py: frequency of null alleles.

Table 6
Nei's analysis of gene differentiation among P. clarkii populations.
Fit Fis Fst Gst Nm
P.clarkii ~ 0.443840.0061 0.231540.0050 03145 04785  0.5450

Note: Fis: Inbreeding coefficient within populations; Fit: Overall inbreeding coefficient;
Fst: Genetic differentiation coefficient among populations; Gst: Nei’s genetic
differentiation; Nm: Gene flow

significant positive correlation between the geographical distance
and genetic distance of P. clarkii populations (r = 0.39694, p =
4.9406).

4. Discussion
4.1. Genetic diversity

Genetic diversity is the product of the long-term evolution of species
or populations [30,31]. The extent of genetic diversity of P. clarkii
determined in the present study was consistent with the previously
reported genetic diversity of P. clarkii in other local areas, such as H =
0.35, as determined by SSRs in Anhui [32]; H = 0.334, as determined
by SSRs in Anhui [20]; and H = 0.2959, as determined by AFLP
markers in 6 populations of the Middle and Lower Reaches of the
Yangtze River [20]. However, lower genetic diversity was detected
elsewhere, such as H = 0.667, as determined by SSRs in 8 populations
of East China and Guangxi [17], and H = 0.5208, as determined by
SSRs in 4 populations of the Lower Reaches of the Yangtze River [18].
At the population and species levels, P. clarkii showed high genetic
diversity, while some shrimps showed a different level of genetic
diversity, for example, Penaeus monodon (H = 0.0917 to 0.1271,1 =
0.1484 to 0.2032) [33], Macrobrachium rosenbergii (PPB = 0.853-
0.941, He = 0.848-0.896) [34], Litopenaeus vannamei (PPB = 0.88 to
0.92) [35], Panulirus polyphagus (H = 0.1135, 1 = 0.1680), P. ornatus
(H = 0.1262,1 = 0.1884), P. penicillatus (H = 0.1185,1 = 0.1731), P.
versicolor (H = 0.1735, 1 = 0.1990), P. homorus (H = 0.1264, | =
0.1877), P. stipsoni (H = 0.0834, I = 0.1232), P. japonicus (H =
0.0589, I = 0.0864) [36]. It also showed lower genetic diversity than
other aquatic animal Mactra veneriformis (H = 0.307, 1 = 0.476) [37],
Crassostrea gigas (H = 0.755/0.882/0.448) [15], Saccharina japonica (I
= 0.617, H = 0.416) [38], and Perinereis aibuhitensis (H = 0.6889/
0.6587) [39]. This consistency in species genetic diversity may be due
to the species distribution. Generally, species that are geographically
widespread have a higher level of genetic variability than those with a
narrow geographic distribution [40]. P. clarkii is widely distributed
throughout China. Conversely, the genetic diversity of P. clarkii was
high because of the wide species distribution.

Invasive populations often suffer from a decrease in genetic
diversity due to bottleneck effects or genetic drift [41]. However,
the genetic diversity of some species does not decrease
significantly after invasion [42]. For example, the populations of
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Fig. 3. A two-dimensional plot of the principal coordinates analysis (PCoA) based on SSR data for P. clarkii.

Dreissena bugensis [43] and Alternanthera philoxeroides invading
Nanjing and other places in China have high genetic diversity [44].
This phenomenon may be related to the following factors. First,
multiple introductions or single introductions of large numbers of
individuals from the same or different sources may lead to higher
genetic diversity of the population [43,45,46,47,48]. Second, the
genetic diversity of invasive species increases by crossbreeding or
mutation after they successfully enter new environments [44,49].
Furthermore, P. clarkii is one kind of freshwater crayfish with poor
migration ability, but the populations of P. clarkii in this study
showed a high diversity level. The following reasons might be
taken account: multiple introductions from the same source or
different sources or a single introduction of a large number of
individuals may lead to high genetic diversity in a population.
Besides, after successful entry of invasive species into the new
environment, genetic variation increases through crossbreeding or
mutation. Huner et al. [50] supported that the successful invasion
of P. clarkii is mainly due to its ecological plasticity, which enables
it to survive stably in a variety of environments. Barbaresi and
Gherardi [51] pointed out that some biological characteristics of
alien invasive species made them gain competitive advantage over
indigenous species in some environments. P. clarkii is a fast-
growing species with R-type propagation strategy [52], the embryo
development of P. clarkii only lasts 14-21 d. It can lay eggs more
than 2-3 times a year, as a result one parent P. clarkii can hold 50-
200 larvae at last. It is generally believed that successful alien
species often have a wide range of adaptation and strong tolerance
to various environmental factors [53]. Species with wide ecological
range can effectively utilize various resources to achieve higher
density and establish wild population [54]. Correia [55] showed
that P. clarkii could successfully establish a population in the place
of introduction was the result of its wide ecological niche and
diversified food. The P. clarkii has a high adaptability to the

hydrological and temperature conditions of the new habitat [56]. In
most water bodies, such as small water bodies, short-term ponding
ditches, and water bodies disturbed by human beings, the P. clarkii
can reproduce [57], and adapt well to the strong seasonal
fluctuation of water level in its living area [51]. P. clarkii can endure
extreme environment and survive in polluted water [51], low
concentration of dissolved oxygen, high salinity and acidity [50].
Because of its strong tolerance to adverse conditions, it can even
spread across land, so it can cross geographical barriers and
establish populations in isolated water bodies [58]. These factors
contribute to the genetic variation and distribution pattern of P.
clarkii. Therefore, the diversity of P. clarkii populations was
increased because the connections between rivers were the main
route of dispersal. Artificial introduction promoted gene exchange
among the P. clarkii populations in different areas, which had some
impact on the genetic diversity of the P. clarkii populations.
Seasonal fluctuations of water levels in lakes and wetlands in the
middle and lower reaches of the Yangtze River affected the genetic
diversity of P. clarkii.

According to the difference in PPB, the genetic diversity of the
Southern provinces was higher than that of the Northern
provinces. These results might be due to the factor of the water
system in the southern provinces that is more developed than that
in the northern provinces, which facilitates the gene exchange of P.
clarkii. For example, in the southern provinces, where populations
QN, GZ, GL and ZQ reside, the water system density is much higher
than in the northern provinces, where the BT population lives;
thus, the distribution of P. clarkii in the southern provinces is
consequently longer. In addition, the different populations show
the same levels of diversity and the same patterns of bands in each
locus, for example, HF, JX, NC, YY, QJ, ZX and CD all in Yangtze River
basin. In general, the genetic structure of P. clarkii populations in
China has not had a significant impact and still has a relatively rich
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genetic diversity. Since no significant differences in the genetic
parameters of P. clarkii populations in the similar areas were
observed. Therefore, distant hybridization should be carried out
among individuals to ensure the relative stability of genetic
diversity and improve the nuclear genetic diversity of these
populations.

4.2. Gene differentiation

Gene differentiation and gene flow are two important indicators for
evaluating the genetic structure of a population. According to Buso et al.
[59] a Gst value of more than 0.25 indicates a very high degree of genetic
differentiation, a Gst ranging from 0.15 to 0.25 suggests a high degree of
genetic differentiation, a Gst ranging from 0.05 to 0.15 represents
moderate genetic differentiation, and a Gst less than 0.05 represents a
small amount of genetic differentiation. In this study, the genetic
differentiation among populations of P. clarkii was very high (Gst =
0.4785) (Table 4). The results are similar to those of Liu et al. [21].

Population differentiation is expected to occur to varying degrees
due to differences in the regional distribution, life cycle and
reproductive pattern among species. Compared with the gene flow in
Pelodiscus sinensis (Nm = 5.9993) [60], that in P. clarkii (Nm =
0.5450) is limited, which enhances the genetic differentiation in this
species. Generally, a degree of gene flow (Nm = 1) indicates gene
flow sufficient to prevent population genetic differentiation due to
genetic drift [61]. Studies also show that gene flow between
populations is relatively low. Various factors can explain the degree of
Gst among species, including the geographical distribution, the
breeding system, population genetic drift and genetic isolation [62].
The relatively low gene flow among the P. clarkii populations is
explained by two processes: reproductive isolation and fluctuations in
the water level, which are important factors affecting population
structure. The 25 groups involved in this study belong to different
water systems, such as lakes and wetlands in the middle and lower
reaches of the Yangtze River basin, which are subject to water level
fluctuations. Their water levels fluctuate seasonally and are related to
the water level of the Yangtze River, while many groups in the north
belong to arid areas and lack reproductive communication.

4.3. Genetic relationships

All populations have some variable morphological characteristics,
including stripes, color, body width and body length, but it is difficult
to recognize them. They are usually used to identify differences in
populations of P. clarkii, depending on the observer's ability. In fact,
similar forms are found among populations [63]. Therefore, molecular
markers have been used to distinguish these species and populations
in recent years [17,18,19,32]. In this study, SSR markers were used to
explore variation in DNA among P. clarkii populations in most
provinces of China. The samples used were from the whole
distribution and were more representative than those collected from
local areas. According to UPGMA cluster analysis, the 25 populations
were divided into 5 groups (Fig. 2). Similarly, according to the results
of structural analysis, when k = 5, all P. clarkii populations from
closely related regions were clustered in the same group (Fig. 4). The
SSR markers revealed that the Northwest China, Qinling and the
Huaihe River, North China and Northeast China, Yangtze River basin,
and South and Southwest China populations clustered with each
other, although the Northwest China, Qinling and the Huaihe River,
North China and Northeast China, Yangtze River basin, and South
and Southwest China populations appeared to be distinct based on
PCoA. The results of this study are consistent with the distribution
of rivers and showed that the polymorphism of the 25 populations
was relatively moderate, indicating that SSR-based marker analysis
was effective and that the population differences were highly
consistent [27].

4.4, Strategies for conservation and sustainable utilization of P. clarkii

Because of the important market value of P. clarkii, the scale of P. clarkii
farming has been expanding in recent years. Although, the genetic
diversity of wild P. clarkii germplasm resources keeps at a high level, it is
necessary to take some protective measures. In recent years, the natural
habitat of P. clarkii has been seriously damaged due to urban activities,
industrial development, increased market demand and pollution. The
ultimate goals are to ensure population protection and sustainable use
and to maintain evolutionary potential [40]. Some other aquatic species
face a similar problem: limited harvesting for use and resources, such as
in Penaeus monodon [33], Macrobrachium rosenbergii [34], Litopenaeus
vannamei [35], Panulirus polyphagus, P. ornatus, P. penicillatus, P. versicolor,
P. homorus, P. stipsoni, P. japonicus [36], C. gigas [15], Mactra veneriformis
[37], medical leech [21] and S. japonica [38]. Because of founder effects or
bottleneck effects, the genetic diversity of migrant populations is
generally lower than that of their original population [43]. Compared
with the results of Barbaresi et al. [47], the genetic diversity of P. clarkii in
China measured here is lower than that in Western Europe and North
America. Population differentiation occurs, and some loci are lost. It can
be concluded that the genetic diversity of P. clarkia was maintained at a
high level due to its strong adaptability and fast reproduction after it
migrated to China. Therefore, breeding during the process of artificial
reproduction or breeding of P. clarkii can combine morphological
characteristics, select parents from different populations as the source
group, and introduce improved varieties from abroad to promote the
healthy and sustainable development of the P. clarkii farming industry.

Therefore, artificial breeding programs seem to be a feasible and
necessary method with which to create new high-quality P. clarkii
varieties. Determining the genetic structure of P. clarkii is helpful for
artificially cultivating high-quality germplasm. The resources of
crayfish should be collected as much as possible and kept in different
places. In conclusion, adequate artificial P. clarkii farms should be
established to meet the strong market demand. Only in this way can
wild crayfish resources be protected.

5. Conclusions

In conclusion, the present study found that genetic diversity determined
by SSR marker analysis of P. clarkii was high at the species level because of
the fact that this species is widely distributed. The high Gst among P. clarkii
populations is attributed to genetic drift and geographic isolation. In this
study, the genetic structure of P. clarkii populations was studied. The
results indicated that more P. clarkii populations should be collected when
formulating conservation and aquaculture strategies.
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