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Background: Traditionally, microbial genome sequencing has been restrained to the species grown in pure
culture. The development of culture-independent techniques over the last decade allows scientists to sequence
microbial communities directly from environmental samples. Metagenomics is the study of complex genome
by the isolation of DNA of the whole community. Next generation sequencing (NGS) of metagenomic DNA
gives information about the microbial and taxonomical characterization of a particular niche. The objective of
the present research is to study the microbial and taxonomical characterization of the metagenomic DNA,
isolated from the frozen soil sample of a glacier in the north western Himalayas through NGS.
Results: The glacier community comprised of 16 phyla with the representation of members belonging to
Proteobacteria and Acidobacteria. The number of genes annotated through the Kyoto Encyclopedia of Genes
and Genomes (KEGG), GO, Pfam, Clusters of Orthologous Groups of proteins (COGs), and FIG databases were
generated by COGNIZER. The annotation of genes assigned in each group from the metagenomics data through
COG database and the number of genes annotated in different pathways through KEGG database were reported.
Conclusion: Results indicate that the glacier soil taken in the present study, harbors taxonomically and
metabolically diverse communities. The major bacterial group present in the niche is Proteobacteria followed
by Acidobacteria, and Actinobacteria, etc. Different genes were annotated through COG and KEGG databases
that integrate genomic, chemical, and systemic functional information.
How to cite: Gupta V, Singh I, Rasool S, et al. Next Generation sequencing and microbiome’s taxonomical
characterization of frozen soil of North Western Himalayas of Jammu and Kashmir, India. Electron J Biotechnol
2020;45. https://doi.org/10.1016/j.ejbt.2020.03.003.
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1. Introduction

More than 10% of the Earth's land surface is covered with glacial ice
[1]. Microbes harbor these huge reservoirs, such as glaciers, icebergs,
and glacial masses, with significant biodiversity and activities in the
frozen environments of the Earth. Extreme conditions at subzero
temperatures had earlier been considered to exist without life, or only
as repositories for wind-transported microorganisms trapped in the
ice [2]. However, now microbes have been found to be the major
component of ecosystems of low to high temperatures providing
conditions for their growth and survival [3]. A study conducted in
gigantic reservoirs of microbial biodiversity in the Antarctic and
Católica de Valparaíso.

araíso. Production and hosting by Els
Greenland glaciers report 9.61 × 1025 microbes [4]. Microbial
biodiversity present at low temperature plays a major role in soil
development and other biochemical processes therein [5]. Novel
findings of industrially important bioactive molecules like enzymes,
antibiotics, etc. can be produced from the biodiversity of microbes
present in extreme niches [6]. Recently, next generation sequencing
(NGS) has developed as a powerful technique for analyzing the
complex samples for taxonomical biodiversity and studying metabolic
pathways [7]. Statistical or computational tools and databases have
been developed to study and manage huge metagenomic data for
faster and detailed genomic or genetic profiling of environmental
samples at a very affordable cost [8,9,10]. Currently, a metagenomic
approach is widely used to find microbial biodiversity in extreme and
unique niches of the environment along with the relative abundance
of genes, biochemical processes, and metabolic pathways [11,12,13].
Studies showed that bacterial groups are being prominently found in
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Agarose gel (1%) showing the extraction of metagenomic DNA. Lane1:
Metagenomic DNA isolated from soil sample of Kolahoi Glacier and Lane 2: λ Hind III
marker.
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the remote area of the Canadian high arctic [14], and 10 bacterial genera
have been identified based on 16S ribotyping from permafrost samples
of an Arctic site [15,16]. These studies clearly revealed the presence of
vast reservoirs of microbial life and communities in extreme
environments like glaciers, snow ice, and ice bergs, ice caps which
impact the dynamics of glacial world, and play a crucial role in soil
formation and other biogeochemical processes [17,18,19]. In the
present study, the whole taxonomical microbial community structure
of a frozen soil sample from a glacier of the North western Himalayas
(NWH) of Jammu and Kashmir (J&K) (India), up to species level along
with the functional annotations of the predicted genes has been
analyzed based on NGS by using the Kyoto Encyclopedia of Genes and
Genomes (KEGG), GO, Clusters of Orthologous Groups of proteins
(COGs), FIG, and PFAM databases.

2. Materials and Methods

2.1. Sample collection

A soil sample of 10–100 g eachwas collected 1–1.5 ft deep under the
surface in triplicate in the month of October, 2015 (autumn) from the
glacier of NWH of J&K, India. The temperature of the glacier was
-20°C. The height of the glacier is 4700 m above the sea level. The
longitude and latitude of the glacier is 34° 9′ 49″ N, 75°19′ 49″ E. The
soil was moist and it was collected in sterile bags. The samples were
carried in airtight sterile bags to the SMVDU and stored in 4°C till
further use.

2.2. Preparation of soil metagenome

A soil sample of 1–2 g, in triplicate, was used for the extraction of
DNA. Total soil DNA was extracted using ultrapure ultraclean Mega
preparation soil DNA kit (Mobio Laboratory, USA) as per the
manufacturer's instructions and then precipitated overnight with 5 M
NaCl and ethanol at -20°C. The sample was centrifuged at 13,500 × g
for 30 min. The pellet was washed with 70% ethanol twice by
centrifuging at 13,500 × g for 10 min. Then, the pellet was air dried,
dissolved in 1× TE, and analyzed on 0.8% agarose gel.

2.3. Quality control of DNA, its amplification, sequencing, and NGS analysis

Agarose gel (1%)was run for accessing the quality of the genomicDNA
(3 μl) at 110 V for 30min using 1 × TAE buffer. A DNA sample of 1 μl was
used for determining the concentration using Qubit® 2.0 fluorometer as
per manufacturer's protocol. Truseq Nano DNA library preparation kit
was used for the preparation of the paired-end sequencing library
from 200 ng of g-DNA. Covaris S2 system is the instrument used for
shearing DNA. Ultrasonication was used for the mechanical shearing
of the g-DNA into smaller fragments. The fragment size is ~300 bp.
Following this, continuous end repairing was done by ligating ‘A’ at
the 3′ ends of DNA fragments to allow platform-specific adapters to
be ligated to both ends of DNA fragments. These adapters contain
sequences that are essential for binding the dual-barcoded libraries to
a flow cell for sequencing, and thus allow the PCR amplification of
adapter-ligated fragments and binding the standard Illumina
sequencing primers. Through HiFi PCR master mix, a high-fidelity
amplification of fragments was performed for attaining maximum
yield from the starting DNA with limited quantity. The DNA thus
amplified was analyzed through Bioanalyzer 2100 (Agilent
Technologies) using high sensitivity DNA chip as per manufacturer's
guide. DNA concentration of the library was again analyzed through
Qubit and mean peak size was analyzed through a Bioanalyzer. The
library was subsequently loaded on the Illumina platform for
clustering and paired-end sequencing of the templates in both
forward and reverse directions.
As this was a metagenomic DNA library, thus de novo assembly of
high quality paired end reads was carried out through the
metaSPADES (v3.11.1) package using default parameters and scaffolds
were generated post adapter trimming and the removal of low quality
reads based on the Phred score, which was over 30 [20]. Genes were
predicted through the Prodigal tool (v2.6.3) using the metagenomics
mode at default parameters [21]. Kaiju, metagenomic classifier was
used to calculate the taxonomic abundance from predicted genes [22].
The functional annotation assignment of predicted genes from the
metagenomic data was done using the COGNIZER tool [23]. In house
Perl scripts were also used for the analysis of NGS data.

3. Results

3.1. Qualitative and quantitative analysis of g-DNA

The quality of the DNA was evaluated first through running it at 1%
agarose gel at 100 V for 30 min (Fig. 1). Quantification using Qubit
Fluorometer revealed DNA concentration 292 ng/μl and a yield of 5.84
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μg. The analysis of the library thus amplified through Bioanalyzer 2100
(Agilent Technologies) (Fig. S1).

3.2. Metagenome assembly and gene prediction

The metagenomic DNA library was prepared from the sample to
prepare the average size of library 453 bp. The library was sequenced
through Illumina platform (2 × 150 bp chemistry) to generate ~9 GB
data. Following this, the de novo assembly of the high quality paired
end reads was done using metaSPADES (v3.11.1) [20]. Fasta sequences
were then generated from the assembly (Fig. S2). Statistics of the
scaffolds' length distribution was calculated. Thus, the scaffolds
generated were subjected to gene prediction using the Prodigal Tool
(v2.6.3) with default parameters [21]. A total of 256,699 scaffolds
were generated for soil sample, which were subjected to genes
prediction by Prodigal (v2.6.3) at the metagenome mode (-meta
option). Prodigal is a widely used gene prediction program that can
identify genes in short, anonymous coding sequences occur with a
high degree of accuracy. The novel value of the method consists of
enhanced translation initiation site identification, the ability to
identify sequences that use alternate genetic codes, and confidence
values for each gene. These predicted genes were then taken further
for taxonomic and functional analysis. Fasta sequences of genes (and
its corresponding protein as well as the GFF file) predicted were also
generated. Total 395,119 genes were predicted, total gene size was
183,172,093 NT and an average length of genes was 446 NT (Fig. S3).

3.3. Accession number

The nucleotide sequence of the whole NGS data has been submitted
in SRA and NCBI, and the accession no is PRJNA543600.

3.4. Taxonomic classification and abundance

Taxonomic classification of the metagenomic DNA at phylum, class,
order, family, genus, and species level was done through the Kaiju tool
[22]. It is a fast and freely accessible tool for classifying the
metagenome's taxonomy. Its algorithm searches for exact protein
matches using a set of reference databases containing the annotated
protein sequences. Kaiju utilizes complete genome databases from the
NCBI Refseq NCBI Blast etc. Based on the alignment and identification
Fig. 2. A bubble plot showing the relative taxonomic abundance in the metagenomic sample. B
size). The size of the circle is scaled logarithmically to represent the number of sequences assig
of identical/homologous protein sequences, the classification is
completed. Accordingly, the taxonomic identifier is linked to the
following scaffold at various levels of taxonomy. Genes predicted from
the Prodigal tool were taken as an input for the Kaiju tool. A total of
202,669 genes from the total of 395,119 genes are having annotation
by at least one database. Through the classification, it was observed
that most abundant taxons from the metagenomic sample are the
Proteobacteria followed by the Acidobacteria (Fig. 2).

Through the analysis of the taxonomic abundance at the Phylum
level, it was observed that the Proteobacteria (with 99,213 genes)
were the most abundant phylum followed by Acidobacteria (with
45,027 genes), Actinobacteria (with 17,640 genes), Verrucomicrobia
(with 16,016 genes), Chloroflexi (with 8727 genes) and so on (top
five most abundant phyla are reported above (Fig. 3), for a more
comprehensive bar plot of phylum abundance at phylum level
reporting top 30 most abundant Phyla).

Furthermore, through the analysis of the taxonomic abundance at the
class level, it was inferred that the Alphaproteobacteria (with 44,865
genes) were the most abundant class followed by Betaproteobacteria
(with 27,540 genes), and the Gammaproteobacteria (with 14,602
genes) in the 30 most abundant classes observed (Fig. S4).

Digging deep into the analysis, taxonomic abundance at the Order
(Fig. S5) and Family levels (Fig. 4) revealed that the Rhizobiales (with
30,305 genes), Acidobacteriales (with 13,623 genes), Burkholderiales
(with 11,372 genes), Rhodospirillales (with 5137 genes), and the
Myxococcalles (with 4489 genes) were the top five most abundant
orders observed in top 30 abundant orders while, Bradyrhizobiaceae
(with 18,312 genes), Acidobacteriaceae (with 7319 genes),
Nitrospiraceae, (with 3540 genes), Burkholderiaceae (with 3329 genes),
and Comamonadaceae (with 3264 genes) were the most abundant
families observed. At the genus level (Fig. 5), most abundant genera
observed were Bradyrhizobium (with 14,096 genes), Candidatus
entotheonella (with 3881 genes), Nitrospira (with 3385 genes),
Candidatus solibacter (with 2479 genes), Gemmatimonas (with 1751
genes), Ktedonobacter (with 1674 genes), Candidatus koribacter (with
1654 genes), and Streptomyces (with 1618 genes) in the top 30 most
abundant genera. The analysis of taxonomic abundance at species
level led to the identification of the Bradyrhizobium erythrophlei (with
3327 genes), Actinobacteria bacterium (with 3247 genes),
Acidobacterium bacterium (with 2869 genes), Acidobacteriales
bacterium (with 2469 genes), Candidatus solibacter usitatus (with 2479
ubble size indicates taxon abundance relative to its maximum abundance (largest bubble
ned directly to the taxon.



Fig. 3. A bar chart showing the taxonomic abundance of metagenomics sample at phylum level.
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genes) as top five most abundant species in the top 30 most abundant
species observed in the presented metagenomic sample (Fig. S6).
Bradyrhizobium erythrophlei is a bacterium from the genus of
Bradyrhizobium, which has been isolated from the nodules of the tree
Erythrophleum fordii [24]. Actinobacteria bacterium are of great
economic importance to humans as agriculture and forests depend on
their contributions to soil systems [25]. Acidobacterium bacteria can
be found in a variety of environments including soil, hot springs,
oceans, caves, and metal-contaminated soils [26]. Candidatus solibacter
usitatus produces enzymes to break down the organic carbon available
in its environment for metabolism and participates in nitrate and
Fig. 4. A bar chart shows the taxonomic abundance at family level. From the figure it can be inf
Acidobacteriaceae (with 7319 genes). This distribution plot is made from top thirty families.
nitrite reduction resulting in the heterogeneous nutrient deposition
throughout the soil where this species inhabits [27].
3.5. Functional annotation

After detailed taxonomical analysis, the predicted genes derived
from the Prodigal Tool were input to the COGNIZER tool, a fast
standalone package, which utilizes multiple annotation databases such
as COGs, KEGG, Gene Ontology, protein families database (Pfam), and
FIGfam (proteins to be iso functional homologs) for a comprehensive
erred that Bradyrhizobiaceae (with 18,312 genes) is the most abundant family followed by



Fig. 5. A bar chart shows taxonomic abundance at genus level. From the figure it can be inferred that Bradyrhizobium (with 14,096 genes) is the most abundant genus followed by
Candidatus Entotheonella (with 3881 genes).

34 V. Gupta et al. / Electronic Journal of Biotechnology 45 (2020) 30–37
functional annotation of individual sequences from metagenomic data
(Fig. S7) [23,28,29,30,31,32].
3.6. Clusters of Orthologous Groups of proteins (COGs) annotation

COGs attempts the phylogenetic classification of proteins based on
proteins encoded in a set of complete genomes of archaea, bacteria, and
eukaryotes. COG database helps in the rapid functional characterization
of the role of one microorganism in its community; in addition, it is
much smaller than the NCBI nonredundant. Through exhaustive
comparison of the predicted proteins from the metagenomic data, COGs
Fig. 6. COG-based annotation of genes. The Clusters of Orthologous Groups of proteins (COG
genomes of bacteria, archaea, and eukaryotes (http://www.ncbi.nlm.nih.gov/COG). The COGs
the results of an exhaustive comparison of all protein sequences from these genomes. The
different orthologous groups of COG database.
were constructed, which represented the annotated genes clustered
under different categories of function (Fig. 6).
3.7. KEGG pathway annotation

KEGG is a database of the manually curated network pathways
representing various cellular processes like Metabolism, Genetic
Information Processing, Environmental Information Processing,
Cellular Processes, and Organismal System. KEGG Functional analysis
showed that 250,808 genes have been assigned with 4617 KEGG
classes. Maximum KEGG Orthology's (KO) assigned were belonging to
s) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete
were constructed by applying the criterion of consistency of genome-specific best hits to
figure represents genes annotated under different functional categories found under

http://www.ncbi.nlm.nih.gov/COG
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the Metabolism category followed by Environmental Information
Processing (Fig. S8). The dominant pathways are serine or threonine
protein kinase, bacterial [EC: 2.7.11.1], and adenylate cyclase [EC:
4.6.1.1] having 2362 and 1732 gene hits, respectively.

4. Discussion

Advancement in DNA sequencing technologies in the interpretation
of sequencing data at an economical price by using the bioinformatic
tools is now widely used [33]. Collection of soil samples, extraction of
their metagenomic DNA, and their data analysis are the three most
important factors for the metagenomic analysis [34,35]. Bioinformatic
analysis of the NGS data using Kaiju software identified 16 different
phyla in which the Proteobacteria was found abundantly and followed
by Acidobacteria, Verrucomicrobia, Thaumarchaeota, Actinobacteria,
etc. Similar findings have been reported by authors [36,37] from the
cold environments in which Proteobacteria (Alpha-, Beta-, and
Gamma - proteobacteria), Bacteroides, and Actinobacteria are the
most common bacterial phyla found as compared to Archaea.
Literature surveys of metagenomic studies show that the
Proteobacteria, Acidobacteria, and Actinobacteria were dominant
bacterial phyla at high altitude soil samples, while the Bacteroidetes
and Fermicutes were dominant at low altitude soils [38]. Besides, high
altitude samples have reported more of Alpha – Proteobacteria, while
the increased presence of Beta-proteobacteria is reported at low
altitudes [38]. Cytophaga, Flavobacterium, and Bacteroides (CFB) have
also been reported in high concentrations at high altitudes [38].
Actinobacteria, Acidobacteria, and Proteobacteria have also been
reported as the dominant phyla found in the active layer and the
permafrost communities [39,40,41,42,43,44] playing crucial roles in
the decomposition of organic matter and nutrient cycling in polar
ecosystems with limited trophic complexity [45]. Bacterial phyla:
Bacteriodetes (CFB cluster), Actinobacteria, Firmicutes, and
Proteobacteria, including representatives from the Alpha-, Beta-, and
Gamma – Proteobacteria classes have been reported earlier in glaciers,
ice, and super cooled cloud droplets [15,46]. Microbial abundance in
snow has been reported as a result of the postdepositional processes
[47]. In the Canadian High Arctic samples, the Alpha - Proteobacteria
and Methylocystaceae family may play a crucial role in methyl and
methane oxidation in the active layer [5,48,49]. Besides, more
complexity and diversity of soil bacterial communities have been
reported from high altitudes [50]. The Alpha-Proteobacteria are
widespread in natural environments including cold regions and are
adapted to the oligotrophic lifestyle assimilating a wide range of
organic compounds [51]. Many ecosystems have been reported to
contain similar dominant bacterial communities [52,53,54]. For
example, Acidobacteria, Alpha - Proteobacteria, Actinobacteria, Beta –
Proteobacteria, and Gamma- Proteobacteria have been reported that
more than 75% of the bacteria are found in the Changbai Mountain, in
the region of northeastern China [54]. Acidobacteria and Proteobacteria
are to be major representatives in a mountainous forest in eastern
Peru [52]; Proteobacteria represented more than 50% of the soil
bacterial community in the Yuanyang Lake ecosystem in Taiwan [55];
Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes are the
major phyla reported from Mount Fuji in Japan [56]. Studies carried
out in the western Himalayas, India report Psychrophilic and
Psychrotolerant bacteria, which are abundantly available in the
Himalayan habitats (60%) [57]. Lower taxonomical characterization
shows that Bradyrhizobium is the most abundant genus followed by
Candidatus and Nitrospira, etc. Contrary to this, the genus Polaromonas
has been reported to be plentiful in the supraglacial area of the Arctic
[19] and Antarctic glaciers [58]. Besides, Arctic and Antarctic glaciers
possess the pigmented algae in large scale such algae are
Chlamydomonas, Chloromonas, Raphidonema, and Chrysophyceae
[59,17] and Fungi, particularly Basidiomycetous yeasts and
Chytridiomycota are also found in abundance [17,60].
The present study conducted at the geography of Pangong lake,
Ladakh [61] reported bacteria (83.86%), archaea (0.24%), eukaryotes
(0.42%), viruses (0.41%), and unclassified (15.02%). The major phyla
reported and represented were Proteobacteria, Bacteroidetes,
Firmicutes, Actinobacteria, Balneolaeota, Cyanobacteria, Verrucomicrobia,
Euryarchaeota, Planctomycetes and Ascomycota. However,
Methylophaga was the most abundant genus found in the Pangong
lake [61]. Thus, results for the present study are in conformity with
the earlier reports up to the phyla level; however, bacterial
communities reported from the cold samples of arctic, permafrost, and
other such niches differ at taxa level.

5. Conclusion

This is the maiden NGS analysis reported from the glacier soil of the
North Western Himalayas, J&K, taken in the present study, which
harbors taxonomically and metabolically diverse communities. This
study will open vistas for the detailed NGS studies of the other glaciers
of the NWH of J&K. The data obtained were used for understanding
the biome diversity and presence of various genes in this important
ecological niche. In the NGS, the community was found to be
comprised of 16 phyla with the representation of members belonging
to Proteobacteria, Acidobacteria, Verrumicrobia, Thaumarchaeota,
Actinobacteria, Bacteriodetes, and Chloroflexi, etc. At the genus level,
Bradyrhizobium was the most abundant as compared to other genera
like Candidatus entotheonella, Nitrospora, Candidatus solibacter,
Gemmatimonas, and Ktedonobacter. The number of genes annotated
through KEGG, GO, Pfam, COG, and FIG databases were generated by
COGNIZER. The annotation of genes assigned in each group from the
metagenomics data through COG database and the number of genes
annotated in different pathways through KEGG database was also
reported successfully.
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