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Background: Mathematical modeling is useful in the analysis, prediction, and optimization of an enzymatic
process. Unlike the conventional modeling methods, Monte Carlo method has special advantages in providing
representations of the molecule’s spatial distribution. However, thus far, Monte Carlo modeling of enzymatic
system is namely based on unimolecular basis, not suitable for practical applications. In this research, Monte
Carlo modeling is performed for enzymatic hydrolysis of lactose for the purpose of real-time applications.
Results: The enzyme hydrolysis of lactose, which is conformed to Michaelis–Menten kinetics, is modeled using the
Monte Carlomodelingmethod, and the simulation results prove that themodel predicts the reactionkinetics verywell.
Conclusions:Monte Carlo modeling method can be used to model enzymatic reactions in a simple way for real-time
applications.
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1. Introduction

Enzymatic reaction has many advantages and is important in
biomanufacturing [1]. β-Galactosidase is widely used in food industry in
removing lactose from milk product and in manufacturing galactose
products [2]. Galactose produced from lactose hydrolysis can be used as
the substrate for the biosynthesis of rare sugars, for example, tagatose.
Application of immobilized β-galactosidase in lactose hydrolysis is cost-
effective for repeated use of the enzyme. Bioprocess modeling is useful
in process analysis, prediction, and optimization, which can save time,
cost, and efforts in process development and optimization, and has
made quite much successes in real-time applications [3,4,5,6,7]. In
general, enzyme kinetics models can be categorized into three major
groups (deterministic, empirical, and stochastic) according to the
implemented methodology [7]. Among them, the stochastic Monte
Carlo modeling method has special advantages in providing
representations of the spatial distribution of the molecules during the
reaction, thereby allowing direct imaging of the molecule repartition on
the lattice of the reaction system [8]. Thus far, most of the reports on
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Monte Carlo modeling of the enzymatic system are based on
unimolecular basis and used for modeling tiny scale, for example, inside
a cell [9,10,11,12,13], or for mechanism study [14]. In this research,
Monte Carlo modeling is performed for enzymatic lactose hydrolysis in
a system consisting of immobilized β-galactosidase and substrate on a
3D lattice, and this model is simple and practical for predicting the time
course of the enzyme reaction process.

2. Materials and methods

β-Galactosidase (10000 U/g) is purchased from Zhongnuo
Biotechnology Development Jiangsu Co., Ltd., China. . Silica gel of 40–
80 mesh is purchased from Qingdao Yonghai . Silica Gel Co., Ltd., China.
The silica gel is aminated for β-galactosidase immobilization, which is
carried out as follows. The silica gel is repeatedly washed using
deionized water and immersed into an activation solution containing
0.8 mol/L NaOH:. dimethyl sulfoxide (DMSO):epoxy chloropropane in
the ratio of 7:10:8, shaken in water bath at 40°C, 170 rpm for 2.5 h, and
then washed using deionized water until pH neutral. The above-
activated . silica gel is immersed into 17.5% ammonia solution, shaken
in water bath at 30°C, 160 rpm overnight for amination. Then, the
aminated . silica gel is washed using deionized water until pH
neutral. β-Galactosidase immobilization is carried out as follows. Five
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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Table 1
The parameter values used in the model.

Monte Carlo model

N1 200 (*0.5 g/L)
N2 70 (*171.4 U)
L 30 (*1/3 cm)
rmax 2 (*0.5 g/L/min)
Pk 0.3 (−)

Michaelis–Menten model

Vmax 4.35 (g/L/min)
kS 72.5 (g/L)
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grams of aminated . silica gel is added to 50 ml of 2% glutaraldehyde
solution, shaken in water bath at 30°C, 160 rpm for 3 h, and washed
repeatedly using deionized water; then, it is put into an enzyme
solution containing 50 mL of pH 6.0 buffer and 50 mL of β-
galactosidase solution, shaken at 30°C, 160 rpm overnight, washed
using pH 6.0 buffer, and stored at 4°C for usage. Activity of the
immobilized β-galactosidase is measured as reported previously [15].
One unit of enzyme activity is defined as the enzyme amount producing
1 μmol of glucose per minute in lactose hydrolysis. Enzyme activity
recovery of the immobilization method is approximately 60%. Enzymatic
lactose hydrolysis is performed in a flask containing lactose of 100 g/L
and immobilized β-galactosidase (12 U/ml) at pH 5 in a water bath at
55°C, shaken at 160 rpm. Lactose hydrolysis is calculated from glucose
production. Glucose concentration is measured using a 10 μm Carbomix
Pb-NP column and HPLC equipped with a refractive index detector. Pure
water is used as the mobile phase with a flow rate of 0.5 mL/min.

Python 2.0 is used in software programming, and the software
program runs on an IBM-compatible personal computer with Windows
8.0. Differential equation is solved by using Runge-Kutta method in
solving Michaelis–Menten model.

2.1. Mathematical modeling

The Monte Carlo algorithm is used in simulating the enzymatic
lactose hydrolysis process. Lactose is hydrolyzed, thereby producing
galactose and glucose as shown in [Equation 1].

S→
k

E
P1 þ P2 ð1Þ

where S indicates lactose, P1 indicates galactose, P2 indicates glucose, k
indicates reaction rate, and E indicates enzyme.

A 3D lattice ismade for simulating the reaction space, and the particles
representing immobilized enzyme and substrates, respectively, are
Fig. 1. Lactose hydrolysis process prediction using the Monte Carlo model shown by (A) 3D la
circle, enzyme; figures from the left to right are calculated at 3, 75, and 150 min, respectively,
randomly dispersed in the 3D lattice. All the particles will move
randomly to new vacant positions in the next time interval. When
substrate particles enter into the neighboring enzyme particles, which
are the six positions before, behind, left, right, up, and down the
enzyme particles, they will have the probability of Pk for combination
with the enzyme forming the enzyme–substrate complex and taking
reaction afterwards. The maximum amount of substrate catalyzed in
one time interval is limited by the maximum reaction rate rmax.

To decrease the computation task and make the model practical for
modeling pilot-scale or large-scale bioreaction system, the substrate
and enzyme particles are not based on unimolecular basis. In this case,
the space of the 3D lattice is defined 1 L for simplification. One
substrate particle in the 3D lattice represents one unit of substrate
(equal to the initial substrate concentration/substrate particle number)
other than one substrate molecule, and total particles of substrate in the
3D lattice is equal to the substrate concentration in the unit of grams
per litter. Similarly, the number of enzyme particles in the 3D space is
not necessarily equal to the number of immobilized enzyme particles,
and total particles of enzyme in the 3D lattice is equal to the total
enzyme activities added in one litter of the reaction broth.
ttice and (B) time course of substrate concentration and reaction rate. A, Star, substrates;
of the simulation.
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Fig. 2. Lactose hydrolysis process prediction using the Monte Carlo model with (A) five rounds of repeats, and (B) the average of the five repeats.

Fig. 3.Monte Carlo model predictions at (A) different reaction rates and (B) different substrate–enzyme combination probabilities.
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3. Results and discussion

3.1. Modeling and simulation of lactose enzymatic hydrolysis using Monte
Carlo method

The lactose hydrolysis process, which involves immobilized β-
galactosidase, is modeled and simulated using the Monte Carlo
modeling method, and the results are shown in Fig. 1. As shown in
Fig. 1A, the substrate in the 3D lattice is decreasing with increase in
Fig. 4. Calculation diagram of genetic algorithm for model parameter optimization.
reaction time. The Monte Carlo model predicts the lactose enzymatic
hydrolysis process quite well as shown in Fig. 1B.

To get a good fit of the prediction of Monte Carlo model with the
experimental data in the above simulation, the two model parameters
of rmax and Pk are optimized by using genetic algorithm (GA), an
optimization method imitating the biology evolution process invented
by Holland [16,17], to minimize the error between the model
prediction and the experimental data. In using GA, two spans around
the initial values of rmax and Pk, respectively, are given. Then, GA will
search the two parameter values within above two spans by
minimizing the model prediction error. The initial value of rmax can be
approximately obtained by the total enzyme activity added to the
enzyme reaction system. The initial value of Pk is unknown; hence, a
larger span from 0.4 to 1 is given (0 ≤ Pk ≤ 1). The GA optimization
method is described in detail in the section after the next. The
parameter values optimized by GA and the other predetermined
parameter values of the Monte Carlo model are listed in Table 1.

The Monte Carlo model works in a random way. To show the
repeatability of this method, five rounds of predictions are made, and
the results are shown in Fig. 2. It shows that the five repeats do not
variate quite much as shown in Fig. 2A, and the average of the five
rounds fits perfectly with the aimed data shown in Fig. 2B. The fitting
results indicate that the Monte Carlo modeling method is capable of
modeling the enzymatic reaction process.

3.2. Effects of parameter values on Monte Carlo model

The effects of parameter values on Monte Carlo model are
investigated. The effects on changing rmax are shown in Fig. 3A. rmax is
similar to Vmax of Michaelis–Menten equation but different in that rmax

is easily reached in the Monte Carlo model, while Vmax of Michaelis–
Menten equation can only be reached when substrate concentration
tends to the maximum value. rmax can be approximately calculated
using [Equation 2].

rmax ¼ Vmax � S0
kS þ S0

ð2Þ

where Vmax is the maximum enzyme reaction rate, S0 is the initial
substrate concentration, and ks is the substrate affinity coefficient. The
effects on changing Pr are shown in Fig. 3B. Pr is the probability of
substrate binding with the enzyme, which is related to ks in
Michaelis–Menten equation, but in a reverse relation, the larger the Pr,
the smaller is the ks. The parameter of Pr is related to the nature of the
enzyme, while the parameter of rmax is related to both the nature of
the enzyme and the amount of the enzyme added.

In addition to the above two model parameters, the other
parameters such as the number of substrate particles, N1; the number
of enzyme particles, N2; the axis lengths of the 3D lattice, L, which are
related to the reaction system, also have influences on the model
performance. In this work, one unit of N1 is defined as equal to 0.5 g/L
of substrate, and then the initial substrate concentration of 100 g/L is
equal to 200 particles of N1. The value of 70 is used for N2, which is
approximately one-third of N1. The lengths of the three axes of the 3D
lattice are the same as that of L with the value of 30. The volume or
space of the 3D lattice can be arbitrarily determined to be one unit,
1 L, for example, for the ease of computation. The values of N1, N2, and
L are correlated to determine the density of the particles in the 3D
lattice, which will affect the binding chance of the substrate with the
enzyme and affect the performance of the calculation in the last. These
parameter values are determined in arbitrary as a compromise
between acceptable computation task and model performance and
then checked and modified by trial and error.

The simplification tomake substrate and enzymeparticles represent
unit amounts of substrate and enzyme, respectively but not molecules
of them is reasonable, as the molecular thermodynamic movement is



Fig. 5. Comparison of the Michaelis–Menten model with the Monte Carlo model. 1, Michaelis–Menten model; 2, Monte Carlo model.
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neglected and only fluid mechanics is considered in modeling the
enzyme reaction system. The characteristics of the effects of N1, N2,
and L on the performance of the system model can be used in
modeling and simulation of bioreaction in not well-mixed bioreactor,
in which case fluid mechanics can be first used to calculate the
uneven distribution of N1 and N2 in the subspaces of the bioreactor.

3.3. Modeling the Monte Carlo model output by using Michaelis–Menten
model

The Michaelis–Menten model is most widely used in modeling
enzyme reaction. Modeling the Monte Carlo model output using
the Michaelis–Menten model is useful in the comparison and
analysis of the reaction kinetics. In doing this, the output of the
Monte Carlo model is fitted using the Michaelis–Menten model by
using [Equation 3] and [Equation 4], using GA in optimization of the
model parameter values of Vmax and ks.

v ¼ Vmax � S
kS þ S

ð3Þ

where v is the enzyme reaction rate, Vmax is the maximum enzyme
reaction rate, S is the substrate concentration, and ks is the substrate
affinity coefficient. The mass balance equation is as follows:

dS
dt

¼ −v ð4Þ

GA is used in the optimization of parameter values. In GA, a
population containing n individuals (or chromosomes) are first
initialized, which is constituted by m × k bits of binary digits
coding for k genes. Each gene coding one parameter value and one
individual coding all model parameter values being optimized. Then,
the population undergoes mutation, hybridization, and selection
operations in each generation in a cyclic way. During the cycling, the
individuals with higher fitness (small model prediction error) have
higher probability to be selected, and the average fitness of this
population will increase during the evolution process (rounds of
calculation). Finally, the individual with the highest fitness is selected,
which codes the optimized parameter values. The fitness is defined by
the reciprocal of the sum of squared model prediction errors. The
scaling procedure transforms the integers coded by the genes into
floats within the parameter value ranges. The calculation ends when
the maximum calculation rounds is reached. The calculation diagram
is shown in Fig. 4.

In the calculation, the initial value of Vmax can be largely estimated
using [Equation 1]. Then, a relatively small range around this value is
used in search of optimized Vmax value by using GA. The initial value
of kS is unknown; hence, a larger range of search span is set for kS
value. The simulation results using the optimized parameter values
are shown in Fig. 5, and the results are in the acceptable range. The
fact that the Monte Carlo model output can be well fitted by using the
Michaelis–Menten model is reasonable, as the Monte Carlo model is
developed according to the Michaelis–Menten kinetics as described in
the section of Mathematical modeling. The results indicate that the
Monte Carlo model is suitable for modeling enzyme reaction kinetics.
The Monte Carlo model can be another choice in addition to the most
widely used deterministic models in enzyme kinetics modeling [18]. A
new approach in enzymatic reaction process modeling is the
application of Boltzmann entropy equation [19,20]. Boltzmann
entropy equation involves fundamental laws of nature, and the
reaction tends to end as the entropy tends to the maximum. Even if, in
some sophisticated cases, calculation of each component involved in
the reactions in a closed system is difficult in applying this method, it
is still worth to be further investigated.

4. Conclusion

In this study, the enzymatic lactose hydrolysis process is modeled
and simulated using the Monte Carlo model, and the model can
predict the reaction process accurately. On the other hand, the output
of the Monte Carlo model can be well fitted by using the Michaelis–
Menten model, which is helpful in the comparison and analysis of the
reaction kinetics. The results indicate that the Monte Carlo model is
suitable for application in enzyme kinetic modeling.
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