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Background: Idesia polycarpa Maxim. var. vestita Diels, a dioecious plant, is widely used for biodiesel due to the
high oil content of its fruits. However, it is hard to distinguish its sex in the seedling stage, which makes
breeding and production problematic as only the female tree can produce fruits, and the mechanisms
underlying sex determination and differentiation remain unknown due to the lack of available genomic and
transcriptomic information. To begin addressing this issue, we performed the transcriptome analysis of its
female and male flower.

Results: 28,668,977 and 22,227,992 clean reads were obtained from the female and male cDNA libraries,
respectively. After quality checks and de novo assembly, a total of 84,213 unigenes with an average length of
1179 bp were generated and 65,972 unigenes (78.34%) could be matched in at least one of the NR, NT,
Swiss-Prot, COG, KEGG and GO databases. Functional annotation of the unigenes uncovered diverse biological
functions and processes, including reproduction and developmental process, which may play roles in sex
determination and differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed
many unigenes annotated as metabolic pathways, biosynthesis of secondary metabolites pathways, plant—
pathogen interaction, and plant hormone signal transduction. Moreover, 29,953 simple sequence repeats were
identified using the microsatellite software.

Conclusion: This work provides the first detailed transcriptome analysis of female and male flower of I. polycarpa
and lays foundations for future studies on the molecular mechanisms underlying flower bud development of
L. polycarpa.

© 2017 Pontificia Universidad Catdlica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flower development is a complex process, including flowering
induction, development of floral meristem identity, and floral organ
development and is initiated when the plant meristem changes its
identity from vegetative to reproductive growth, this transition which
is triggered by five genetically defined pathways in Arabidopsis
thaliana [1]. Floral repressor can maintain a vegetative state in the
center of the shoot apical meristem [2]. However, floral integrating
proteins, such as FLOWERING LOCUS T (FT) and SUPPRESSOR OF
OVEREXPRESSION OF CO1 (SOC1) can accept signals from the
flowering control genetic pathway and activate the floral meristem
identity genes LEAFY (LFY) and APETALA1 (AP1) [3]. LFY, in turn,
activates the floral organ identity genes, including a set of floral
homeotic genes [4]. Development of a functional androecium and
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gynoecium involves a large number of genes and mutations in any of
the many regulatory genes have the potential to trigger abortion or
loss of function of male and/or female organs [5]. In dioecious plants,
two broad categories of unisexual flowers have been recognized: the
‘type I' category includes flowers that are unisexual through abortion
of reproductive organs, and the ‘type II' category includes flowers that
are unisexual from inception [6]. Transcription factors (TFs), which are
usually classified by their DNA-binding domains, play crucial roles in
regulating flower development. For example, the MADS-box family
represents the best studied floral gene family, of which multiple
members are crucial for floral development [7], and the MYB family
has been reported to be involved in stamen and ovule development
[8]. Phytohormones are non-genic elements important to plasticity in
floral developmental pathways and they also function in the
maturation of unisexual inflorescences [9]. Previous research has
reported that ethylene promotes female sex expression in cucumber
[10]. Chen et al. reported that application of exogenous cytokinin
(6-benzyladenine, BA) on inflorescence buds of Jatropha curcas can
significantly increase the number of female flowers [11]. In Populus
tomentosa [12], endogenous gibberellins (GA) and auxin (IAA)
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contents were higher in male flowers than in female flowers
during development. In general, the expression of TFs and plant
hormones can affect a mechanism that may be important for flower
development and sex determination in plants.

With the advent of next generation sequencing technology, a novel
approach to transcriptome profiling, called RNA sequencing
(RNA-seq) has emerged; advantages over traditional techniques
include rapid processing, high throughput, and greater cost
effectiveness [13]. For plants, particularly those without a
whole-genome database, transcriptome-wide RNA-seq analysis is an
efficient method for obtaining information on unigenes involved in
developmental processes, such as flower development [14]. Recently,
deep sequencing has been widely used to study the transcriptome
dynamics of flower development, both in herbaceous plants, such as
cucumber [15] and wheat [16], and in woody trees, such as Populus
[12], Quercus suber [17] and Metasequoia [18].

Idesia polycarpa Maxim. var. vestita Diels is a dioecious tree of the
Flacourtiaceae family, which is native to eastern Asia including China,
Japan, and Korea [19]. This tree can be 8-21 m high and the fruit has a
high oil content, confirmed to be edible, and has the potency to be
useful in preparation of biodiesel [20]. However, it's difficult to
identify its sex during the long juvenile stage, and the reproductive
maturity of seedlings takes 4 or 5 years, before the small flower buds
begin to appear in the panicle rachis in early April and bloom three
weeks later [16]. However, because only female plants produce
flowers and subsequently fruit, knowing the sexual identity of the
trees in the seedling stage would be advantageous for optimal
production, and also for breeding purposes. Flowers of I. polycarpa,
lack of petals, are imperfect; the early development of female flowers
includes bisexual tissues, with male sexual degradation occurring at
later developmental phases; and early development of male flowers
similarly includes bisexual tissues, with the presence of a rudimentary
pistillode in male flowers at later developmental phases. However,
currently available genomic and genetic information for I polycarpa
are limited, and genes implicated in flower development and organ
abortion in male and female flowers of I. polycarpa have not yet been
reported. In the present work, flower buds of both sexes of I. polycarpa

were collected, and RNA-seq was performed on the Illumina HiSeq
2000 platform. Many candidate genes for flower development were
identified. This represents a valuable resource for future investigating
the molecular mechanisms involved in female and male floral
development in I polycarpa.

2. Materials and methods
2.1. Plant materials

L. polycarpa flower buds were collected from female and male Idesia
polycarpa Maxim. var. vestita Diels trees of the same age and the height
of 5 m in Ziyang, Sichuan, Southwest China (Fig. 1a). The female and
male panicles were both nearly 20 cm (Fig. 1b and c) with flower
buds about 5 mm in diameter at the late developmental stage before
blooming (Fig. 1d). After the calyx of those flower buds removed and
observed under a stereo microscope (Olympus, Tokyo, Japan), the
abortive stamens were obviously found in female flower buds
(Fig. 1e) and the arrested pistil in male flower buds (Fig. 1f).
Compared with normal stamens in male buds, the anthers in the
female buds were degenerated and whitish in color; similarly, the
pistil in the male buds also stopped developing with thin and small in
size. Samples were immediately frozen in liquid nitrogen and then
stored at -80°C until use.

2.2. RNA extraction, cDNA library preparation and Illlumina sequencing

Total RNA of each sample was isolated from male and female buds
using the TRIzol Reagent (Invitrogen, USA) according to the
manufacturer's protocol. The quality and quantity of RNA were
evaluated by 1% agarose gel electrophoresis and a NanoDrop 2000
spectrophotometer (Thermo Scientific, USA).

To eliminate the individual differences, equal amounts (2 pg) of high
quality total RNA of three replicates of each sample were mixed to get
pooled samples. A total amount of 2 ug RNA of each pooled sample
was used as input material for generating sequencing librariesas using
the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA)

Fig. 1. Morphological structures of female and male flower buds of I. polycarpa. (a) L. polycarpa tree with the height of 5 m. (b and c¢) The female and male panicle at the late developmental
stage with the length of nearly 20 cm, respectively. (d) Flower bud with 5 mm in diameter. (e) Female bud. (f) Male bud. S: stamen; P: Pistil. Bars = 1 mm.
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following manufacturer's instruction. The two (male and female) cDNA
libraries were sequenced using the Illumina HiSeq™ 2000 platform
(BGI, Shenzhen, China).

2.3. Data filtering and de novo assembly

Raw reads were generated by the Illumina instrument software, and
then were processed through in-house Perl scripts to remove reads
containing adapter and low-quality reads to obtain clean reads. The
Q20, GC-content, and sequence duplication level in the clean reads
were calculated. All downstream analyses were based on clean reads
with high quality. Transcriptome de novo assembly of the clean reads
was carried out with Trinity software (release-20130225) [21]. The
reads with overlapping segments were assembled into contigs. Then
the contigs were assembled into unigenes by paired-end assembly
and gap filling. The distribution of contigs and unigenes lengths was
also calculated as an evaluation standard for assembly quality.

2.4. Functional annotation and single sequence repeat (SSR) analysis

To identify unigene putative functions, all unigenes were
aligned with the NCBI non-redundant protein database (NR,
release-20130408), Swiss-Prot protein database (release-2013_03),
the Cluster of Orthologous Groups of proteins database (COG,
release-20090331) and Kyoto Encyclopedia of Genes and Genomes
database (KEGG, release 63.0) using BLASTX with the E-value cutoff
<1le-5. Unigenes were also aligned with non-redundant nucleotide
sequence database (NT, release-20130408) in GenBank by BLASTn
(E-value <1e-5). On the basis of NR annotations, the Blast2GO
program (version 2.5.0, http://www.blast2go.com/b2ghome) was
used to obtain the gene ontology (GO) annotations of unigenes [22].
Subsequently, the WEGO software program was used to perform GO
functional classification (biological process, molecular function
and cellular component) for all unigenes and to understand the
distribution of gene functions of I. polycarpa from the macro level [23].
In addition, KEGG, a major public pathway-related database [24],
was used to further study the complex biological behaviors of
unigenes related to flower development in I. polycarpa. Moreover,
MicroSAtellite software (MISA) was employed to identify SSR in the
assembled unigenes of L. polycarpa, the repeat thresholds for Mono-,
Di-, Tri-, Quad-, Penta- and Hexa-nucleotide motifs with a minimum
of 12, 6, 5, 4, 3 and 3, respectively.

3. Results and discussion
3.1. lllumina sequencing and de novo assembly

A total of 55,100,394 raw reads were acquired by Illumina
paired-end sequencing and submitted to the NCBI Sequence Read
Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/) under the accession
number SRP065835. After stringent quality assessment and data
filtering, 28,668,977 and 22,227,992 clean reads of female and male
buds were harvested, respectively, indicating that the sequencing was
qualified for subsequent assembly (Table 1). Because no reference
genome exists for I polycarpa, the high-quality reads from two cDNA
libraries were combined and de novo assembled into a reference
transcriptome using Trinity software [21]. This assembly yielded
405,212 contigs with a maximum length of 13,746 bp, a minimum

Table 1

Summary of Illumina transcriptome sequencing for I. Polycarpa.
Sample Total reads Total bases Q20% GC% N %
Female 28,668,977 5,791,133,354 98.73% 43.03%
Male 22,227,992 4,490,054,384 98.73% 43.11% 0

length of 101 bp, an average length of 247 bp and an N50 of 332 bp
and 84,213 unigenes with a maximum length of 13,746 bp, a
minimum length of 300 bp, an average length of 1179 bp and an N50
of 1767 bp (Table 2). In addition, 57,837 unigenes (68.7%) are longer
than 500 nt and 36,119 unigenes (42.9%) are longer than 1000 nt
(Table 2). These quality statistics indicated the sequencing and
assembly results were qualified for further analysis.

3.2. Functional annotation of the unigenes

3.2.1. Unigene sequence similarity analysis

To provide putative annotations for the unigenes, all of the
assembled unigenes were aligned to the protein database NR,
Swiss-Prot, KEGG and COG using BLASTx and the nucleotide sequence
database NT by BLASTn. A total of 65,972 unigenes (78.34% of all
84,213 unigenes) were annotated, including 55,539 in NR, 64,763 in
NT, 33,864 in Swiss-Prot, 31,387 in KEGG, 20,214 in COG, and 45,298
in GO (Table 3). However, the lack of a complete genomic or
transcriptomic reference sequence for I polycarpa increased the
difficulty of unigene annotation. Thus, it is acceptable that some
unigenes had no annotation in those databases and some unmatched
unigenes may represent lineage-specific genes that have not been
previously characterized.

The E-value and similarity distribution of the best hits against the NR
database were shown in Fig. 2a and Fig. 2b, respectively. For species
distribution, Populus balsamifera subsp. trichocarpa provided the best
BLASTx matches with 44,087 unigenes (79.38%). The second closest
species was Ricinus communis with 5104 unigenes (9.19%), followed
by Vitis vinifera (3.95%), Amygdalus persica (1.56%) and other species
(5.92%) (Fig. 2c).

To classify the function of the L polycarpa unigenes, GO terms were
assigned using the Blast2go tool based on the NR protein sequence
database annotation of the unigenes. This analysis provided
hierarchical relationships that represent information on molecular
functions, cellular components and biological processes and 45,298
unigenes was obtained and then classified into 55 GO terms (Fig. 3,
Table S1). The GO terms with the most unigenes were ‘cell’ and ‘cell
part’ both belonged to the cellular component category, with 33,882
(74.80%) and 33,880 (74.79%) unigenes respectively. In the biological
process category, ‘cellular process’ and ‘metabolic process’ covered
28,706 (63.37%) and 28,202 (62.26%) unigenes, respectively. In the
molecular function category, ‘binding’ (23,465 unigenes, 51.80%) and
‘catalytic activity’ (22,295 unigenes, 49.22%) were the most abundant.
Furthermore, a number of unigenes associated with ‘developmental
process’ (8403 unigenes, 18.55%) and ‘reproduction’ (5662 unigenes,
12.50%) may play important roles in sex determination and
differentiation of . polycarpa. These relative percentages were similar
to those observed for transcriptome analysis of flowers in Jatropha
curcas [25] and Quercus suber [17].

Table 2

Assembly quality and length distribution of assembled contigs and unigenes.
Length Contigs Unigenes
Total number 405,212 84,213
Total length(bp) 100,097,601 99,348,277
Max length(bp) 13,746 13,746
Min length (bp) 101 300
Mean length (bp) 247 1179
N50 length (bp) 332 1767
0-200 29,771 (21.7%) -
200-300 45,916 (33.5%) -
300-500 29,116 (21.2%) 26,376 (31.3%)
500-1000 16,995 (12.4%) 21,718 (25.8%)
1000-2000 10,208 (7.4%) 21,723 (25.8%)
>2000 5206 (3.8%) 14,396 (17.1%)
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Table 3
Summary for annotation results of I. Polycarpa unigenes.

NR NT Swiss-Port KEGG COG GO All annotated unigenes All assembled unigenes
Number of unigenes 55,539 64,763 33,864 31,387 20,214 45,298 65,972 84,213
Percentage (%) 65.95 76.90 40.21 37.27 24.01 53.79 78.34 100

3.2.2. COG annotation and classification

Subsequently, for deeper understanding functional classification,
20,214 unigenes mapped to COG database were divided into 25
functional categories, covering most of the life processes. The top
category was ‘General function prediction only’ (n = 6462), followed
by ‘Replication, recombination and repair’ (n = 3402) and
‘Transcription’ (n = 3116); while there was only one unigene in the
‘Extracellular structures’ and five unigenes in the ‘Nuclear structure’

(Fig. 4).

3.2.3. KEGG pathway annotation

To further illustrate the biochemical pathways and transduction
processes used during I. polycarpa, 31,387 unigenes (47.58%) were
mapped to 128 KEGG pathways (Table S2). Among these, ‘metabolic
pathways [ko01100] (6392; 20.37%), were the most represented
groups, followed by ‘biosynthesis of secondary metabolites pathways
[ko01110]" (2996; 9.55%), ‘plant-pathogen interaction [ko04626]
(1831; 5.83%), and ‘plant hormone signal transduction [ko04075]
(1532; 4.88%). Additionally, some unigenes also were mapped to
several pathways related with reproduction and development such as

plant hormone signal transduction, circadian rhythm and flavonoid
biosynthesis. These pathways probably played significant roles in
investigation of specific biochemical and development processes.

3.3. Identification of I. polycarpa SSRs based on the de novo assembled
transcriptome

SSRs are widely distributed throughout eukaryote genomes and
transcriptomes, with high variability, co-dominant inheritance and
detection convenience, and very useful as molecular markers for
genetics and biology researches [26]. In 84,213 Unigene of I. polycarpa,
we detected 29,953 SSRs, of which Mono-nucleotides comprised the
largest fraction (9782, 32.66%) followed by Di-nucleotide (6921,
23.11%) and Tri-nucleotide (5420, 18.10%). Moreover, a total of 1862,
3100 and 2868 SSRs were detected by Quad-nucleotide,
Penta-nucleotide and Hexa-nucleotide, respectively. AG/CT (4679)
represented the largest fraction of Di-nucleotide, whereas AAG/CTT
(1220) was the most abundant Tri-nucleotide (Fig. 5), which was also
coincident with results in other angiosperms [27,28]. SSRs can be used
not only for genetic diversity analysis, characters identification and

a E-value Distribution

b Similarity Distribution

19.2%

9.0% 10.5%
=0 ® 1e-45~1e-30 B 17%~40% 80%~95%
0~1e-100 = 1e-30~1e-15 = 40%~60% = 95%~100%
1e-100~1e-60 ® 1e-15~1e-5 B 60%~80%
1e-60~1e-45
C Species Distribution

= Populus balsamifera subsp. trichocarpa
Ricinus communis

= Vitis vinifera

= Amygdalus persica

= other

Fig. 2. Statistics of NR annotation e-value, similarity and species distribution of the annotated All-unigenes.
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Fig. 3. GO classification of the annotated All-unigenes.

on transcriptome have been widely developed and also linked to sex

germplasm resources identification, but also for gender identification,
which may provide insight into genetic diversity and a set of
sex-linked SSR markers in I. polycarpa. Moreover, SSR markers based

COG Function Classification of All-Unigene.fa Sequence

determination in many plants, such as Phoenix dactylifera [29],
kiwifruit [30], Tapiscia sinensis [31] and Myrica rubra [32].
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Fig. 5. SSRs identified in the transcriptome of I. polycarpa. X-axis: motif types. Y-axis: numbers of SSRs matched to different motif types.
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Photoreceptor gene PHYA(phytochrome A) 6 K12120
PHYB(phytochrome B) 9 K12121
PHYE(phytochrome E) 1 K12123
CRY1(cryptochrome 1) 2 K12118
CRY2(cryptochrome 2) 3 K12119
Circadian rhythm import genes FKF1(flavin-binding kelch repeat F-box protein 1) 5 K12116
PIF3 (phytochrome-interacting factor 3) 56 K12126
Circadian rhythm clock genes TOC1(APRR1,pseudo-response regulator 1) 21 K12127
CCA1(circadian clock associated 1) 22 K12134
LHY(late elongated hypocotyl) 24 K12133
Circadian rhythm export genes CO (zinc finger protein CONSTANS) 50 K12135
GI (GIGANTEA) 2 K12124
Flowering integrators FLOWERING LOCUS T (FT) 5 K16223
SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) 7 no KO assigned
Flowering repressors TERMINAL FLOWERT1 (TFL1) 2 no KO assigned
SHORT VEGETATIVE PHASE (SVP) 2 no KO assigned
Floral meristem identity gene LEAFY (LFY) 2 no KO assigned
Homologous gene of FT and TFL1 MOTHER OF FT AND TFL1 (MFT) 2 no KO assigned
A-class genes APETALAT (AP1) 3 K09264
APETALA2 (AP2) 5 K09284
B-class genes GLOBOSA(GLO) 2 K09264
APETALA 3 (AP3) 3 K09264
PMADS 1 2 K09264
PMADS 2 2 K09264
C-class genes Agamous (AG) 2 no KO assigned
E-class genes SEPALLATAT (SEPT) 2 K09264
SEPALLATA3 (SEP3) 2 no KO assigned
D-class genes Agamous-like MADS-box protein AGL11 1 K09264
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3.4. Unigenes putatively related to flower development of I. polycarpa

Flower development is a complex process regulated by the
elaborate coordination of many genes. Functional annotation
revealed that a number of unigenes with similarity to genes from
other systems were involved in flower development. For example,
many unigenes were similar to photoreceptor and circadian
rhythm genes, flowering integration and repressor genes and floral
meristem and organ identity genes (Table 4). Notably, two putative
MOTHER OF FT AND TFL1 (MFT), homologous to FT and TFL1, which
were reported to promote floral induction in A. thaliana [33], were
also found in I. polycarpa with higher expression in the male buds
compared to the female bud, which together with SOC1 and LFY
were identified to play roles in the late stages of Metasequoia
glyptostroboides buds [34].

Moreover, some unigenes involved in floral organ determination in
other systems were identified in I polycarpa, which were also
reported to be crucial for flower organ formation in Taihangia rupestris
[35]. According to the ‘ABCDE’ model, B-class is related to the
production of petals, and stamens are regulated by the activity of the
B-class and C-class genes, while the same C-class genes alone are
responsible for carpel development [36]. Among them, some
identified unigenes, homologs for A-class genes, AP2, and B-class
genes showed lower expression levels in the I polycarpa female
library, and may account for the lack of petals in I. polycarpa flower
buds. In addition, two homologs of the C-class gene AGAMOUS (AG)
and four homologs of E-class genes showed similar levels of
accumulation in both female and male libraries. Additionally, it's
reported that the D-class gene SEEDSTICK (STK), a homolog of
Agamous-like gene 11 (AGL11), plays an important role in carpel and
ovule development [37] and one homolog for AGL11 was more highly
expressed in female buds, indicating it may be responsive to signals
involved in carpel and ovule development. These results provide
reliable information for further studies on the expression of unigenes
related to flower development in I polycarpa.

4. Conclusion

In this study, the transcriptomes of Idesia polycarpa Maxim. var.
vestita Diels female and male flower buds were sequenced using
[llumina sequencing technology for the first time. De novo assembly
generated 84,213 unigenes, 78.34% of which were mapped to major
public databases, enriching the functional genomic resources available
for I. polycarpa. Those unmatched unigenes may be species specific
genes in I polycarpa. Idesia polycarpa unigenes uncovered diverse
biological functions and processes, such as reproduction and
developmental process, and some unigenes putatively related to
flower development were detected, and may play important roles in
sex determination and differentiation. In addition, we also identified
29,953 SSRs based on the de novo assembled transcriptome of
I. polycarpa. Taken together, these data provide insights into the
mechanisms of female and male flower development in I. polycarpa
and important candidate genes for further functional studies to
analyze differences in sexual reproduction between female and male
flower buds of I. polycarpa, all of which will prove valuable for further
research into the reproductive biology and functional genomics of
L. polycarpa. Further analysis of these SSRs will provide useful
resources for conservation genetics and gender identification research
on L. polycarpa in the future.
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