• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 9, No 1 (2006)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation | Anastassiadis | Electronic Journal of Biotechnology
doi: 10.2225/vol9-issue1-fulltext-5
Electronic Journal of Biotechnology, Vol 9, No 1 (2006)

Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation

Savas Anastassiadis, Hans-Jürgen Rehm



Abstract

The effect of air saturation on citric acid production in batch, repeated batch and chemostat cultures has been studied. It was shown that, under continuous fermentation (chemostat mode), the highest concentration of citric acid equal of 98 g/l was produced at 20% of air saturation. In contrary to continuous fermentation, displaying an optimum at 20%, 80% air saturation yielded higher values in repeated batch fermentation process. 167 g/l citric acid were produced continuously with the fill and drain technique at 4.85 days, at 80% air saturation, compared with 157.6 g/l achieved within 5.4 days at 20%. Under repeated batch fermentation, the formation rate of the generic product (Rj) as well as the specific citric acid productivity (mp) reached a maximum of 1.283 g/(l x hr) at 4.01 days and of 0.0375 g/(g x hr) at 4.58 days, respectively. The glucose consumption rate (Rx) reached a maximum value of 3.33 g/(l x hr) entering stationary phase after 2.56 days at a glucose concentration of 131.2 g/l.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology