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Chloroplast biotechnology has emerged as a promissory platform for the development of modified plants
to express products aimed mainly at the pharmaceutical, agricultural, and energy industries. This tech-
nology’s high value is due to its high capacity for the mass production of proteins. Moreover, the interest
in chloroplasts has increased because of the possibility of expressing multiple genes in a single transfor-
mation event without the risk of epigenetic effects. Although this technology solves several problems
caused by nuclear genetic engineering, such as turning plants into safe bio-factories, some issues must
still be addressed in relation to the optimization of regulatory regions for efficient gene expression, cereal
transformation, gene expression in non-green tissues, and low transformation efficiency. In this article,
we provide information on the transformation of plastids and discuss the most recent achievements in
chloroplast bioengineering and its impact on the biopharmaceutical and agricultural industries; we also
discuss new tools that can be used to solve current challenges for their successful establishment in recal-
citrant crops such as monocots.
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1. Introduction

For many years, plants’ nuclear genome has been a target for
genetic engineering to produce bio-factories. Despite conser-
vatism, the modified plants have emerged as one of the most
promising scalable platforms for protein production [1]. The main
objective has been to produce large amounts of useful proteins that
can meet the needs of a growing population projected to exceed
nine billion people by 2050. Plants that produce vaccines, antibod-
ies, fortified foods, plants with useful agronomical traits such as
resistance to pests and diseases, and plants with low cell wall con-
tent components are currently in development for pharmaceutical,
agricultural, and energy industries.

Nuclear transformation has made it possible to obtain modified
plants that reduce the production costs of the proteins of interest;
however, this also leads to biosafety problems. The transformed
plants can hybridize with wild relatives, allowing transgenes to
be dispersed uncontrolled [2]. These observations are conducive
to the search for new strategies that can reduce or eliminate the
environmental impact, and this is where chloroplast transforma-
tion makes its contribution. Perhaps from a public and ecological
point of view, gene containment is the most notable advantage
that plastid transformation offers. However, other advantages
include the high level of protein expression produced by transplas-
tomic plants without gene silencing, multi-gene engineering, and
the ability to eliminate position effects [3,4].

At present, the study and manipulation of chloroplast DNA have
become accomplished in many laboratories worldwide, having
successful transformations in several species in a stable form,
mainly in dicot plants. There are already well-established transfor-
mation protocols; however, despite having achieved a stable trans-
formation in rice [5], it remains a fact that monocot crops are
recalcitrant to plastid transformation. Pleiotropic effects have also
been reported in some transplastomic plants [6,7], so more studies
are required to make the plastid transformation more efficient.

The biosafety feature and inherent capacity for mass production
of recombinant proteins offered by plastid transformation have
made it a rapidly growing area; however, it still has to dealwith sev-
eral drawbacks to be considered successful [8]. Thus, in this review,
weexplore the advances in theplastid transformation, the strategies
thatwould allowus to increase the expression of proteins of interest
in plastid compartments, and the challenges that must be solved to
extend this technology to other plant species.
2. Chloroplast biology: the machinery behind protein
production

Chloroplasts are organelles involved in the biosynthesis of fatty
acids, nitrogen and amino acid metabolism, phenol compounds,
purines, pyrimidines, isoprenoids, starch, pigments, vitamins syn-
thesis, and also are implicated in themetabolism of phytohormones
such as cytokinins, abscisic acid, and gibberellins—as a result, any
interruption of its normal metabolism can be lethal in plants [9].

About 3000 proteins are accumulated within it to control
chloroplast metabolism, and many of them are encoded in the
96
cell nucleus; very few are encoded in the chloroplast itself
[10]. The proteins produced in the chloroplast are encoded by
around 120 genes in a genome of ~150 to 220 kb with quadri-
partite structure where the particular feature in higher plants
is the duplication of a large region (~25 kb) in an inverted orien-
tation (IRs) [11,12,13], that provide genomic stability, thus
requiring its maintenance for the evolution of chloroplast gen-
omes [14,15,16,17]. Of the genes encoded in the chloroplast gen-
ome, around 47 genes, such as psb, psa, ycf3, ycf4, pet, atp, ndh,
and rbcL, are involved in the formation of photosynthetic appa-
ratus (PSII subunit, PSI subunit, PSI assembly, cytochrome b6f
complex, ATP-synthase subunit, and the chloroplast NADPH plas-
toquinone oxidoreductase complex subunit). More than 60
genes, such as trn, rrn, rpl, rps, rpo, matK, clpP, and infA, are
involved in the genetic system (tRNA, rRNA, ribosomal proteins,
RNA-polymerases, maturases, caseinolytic proteases, and factors
of translation initiation). Some genes are not directly involved
in the process of photosynthesis or the chloroplast genetic sys-
tem, such as accD (ß-subunit of acetyl-CoA-carboxylase), ccsA
(cytochrome C biogenesis), and cemA (envelope membrane pro-
tein) [11,16]. In addition, the chloroplast genome has hypothet-
ical open reading frames, such as ycf1 (Tic214) and ycf2, is
presumably involved in protein import functions (for more infor-
mation on ycf1 and ycf2, see [18,19,20,21]).

The chloroplast genome is grouped into polyploid nucleoids
whose number varies with the age of the tissue: from a few
in meristematic plastids to >30 in mature chloroplasts (about
20–750 nucleoids per cell) [22]. This particularity of increasing
the number of genomes per cell over time, which has a positive
effect on the transgene copy number per cell, coupled with the
fact that genes in the chloroplast can be expressed as an operon
that allows for multigene engineering [11,23,24], are the rea-
sons why the chloroplast genome is a target of plant
biotechnology.
3. Plastid transformation: strategies to extend the technology to
other crops

The chloroplast is responsible for the major metabolic processes
in plant cells [9]. In recent years, 4891 chloroplast genomes from
different species have been deposited in the National Center for
Biotechnology Information (NCBI) database. This database has
facilitated the understanding and manipulation of the genome in
order to insert genes of interest that may help to solve the prob-
lems that arose with the nuclear transformation, but through a
new route of recombinant protein expression, which is safer, more
efficient and, above all, more controllable.

3.1. Species with stable chloroplast transformation

The plastid expression system is based on the insertion of
exogenous DNA by homologous recombination to specific chloro-
plast genome sites [25]. Although chloroplast transformation was
developed three decades ago in Chlamydomonas reinhardtii by Boy-
ton et al. [26], its establishment in other interest species has been a
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challenge. Currently, stable transformations have been carried out
in higher plants, such as tobacco, cauliflower, tomato, Arabidopsis,
lesquerella, artemisa, cabbage, rapeseed, poplar, alfalfa, potato, car-
rot, cotton, oilseed rape, eggplant, petunia, soybean, sugar beet,
sweet broom, rice, bitter melon, lettuce, and pepper, although it
has also transformed moss, liverworts, and algae (Table 1); the
model species is still tobacco (Fig. 1).

Arabidopsis thaliana is a special case since its chloroplast trans-
formation is highly challenging. Arabidopsis produces a nuclear
homomeric acetyl-CoA-carboxylase (ACCase, acc2 gene), which is
imported to plastids with a partial function to the heteromeric
ACCase encoded by the plastid accD gene involved in the metabo-
lism of fatty acids; hence, when plastid translation is blocked by
spectinomycin, used as a selective agent in transformed tissues,
the nuclear ACCase enzyme enables a limited fatty acid biosynthe-
sis in plastids, permitting the rampant growth of untransformed
callus material, which prevents the efficient obtaining of trans-
formed plants [27]; for that reason, it was hypothesized that the
knockout of the nuclear gene acc2 would produce tissues hyper-
sensitive to spectinomycin because it would force the plastids to
depend solely on the function of the plastid accD [28]. This was
confirmed recently by Ruf et al. [29]. They obtained a high recovery
of fertile transplastomic plants using root tissue from A. thaliana
deficient in the acc2 nuclear gene, overcoming the main obstacle
Table 1
Species transformed by stable chloroplast transformation.

Family Species

Plants
Dicots Solanaceae Nicotiana tabacum var. Petit Havana, Nicotiana

Nicotiana sylvestris
Solanum lycopersicum
Solanum tuberosum cv. Desirée and line 1607
Petunia hybrida var. Pink Wave
Solanum melongena
Capsicum annuum var. G4

Brassicaceae Arabidopsis thaliana
Brassica napus
Lesquerella fendleri
Brassica oleracea var. botrytis
Brassica oleracea var. capitata
Brassica napus cv. FY-4

Malvaceae Gossypium hirsutum cv. Coker310FR
Apiaceae Daucus carota cv. Half long
Fabaceae Glycine max

Medicago sativa cv. Longmu 803
Asteraceae Lactuca sativa cv. Verônica, cv Flora and cv. Ci

Artemisia annua
Salicaceae Populus alba
Amaranthaceae Beta vulgaris
Plantaginaceae Scoparia dulcis
Cucurbitaceae Momordica charantia

Monocots Poaceae Oryza sativa var. Japonica line 19 and Hwa-Ch

Algae
Green algae Chlamydomonadaceae Chlamydomonas reinhardtii

Euglenaceae Euglena gracilis
Haematococcaceae Haematococcus pluvialis
Dunaliellaceae Dunaliella tertiolecta

Red algae Porphyridiophyceae Porphyridium sp. UTEX 637

Bangiaceae Pyropia yezoensis
Cyanidiaceae Cyanidioschizon merolae

Microalgae Phaeodactylaceae Phaeodactylum tricornutum
Monodopsidaceae Nannochloropsis oceanica
Isochrysidaceae Tisochrysis lutea

Moss
Funariaceae Physcomitrella patens

Liverworts
Marchantiaceae Marchantia polymorpha
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for the A. thaliana chloroplast transformation. Consequently, this
strategy could be extended to other plant species that are closely
related to the Brassicaceae recalcitrant to the selection and regen-
eration of transplastomic cells.

3.2. Selection marker gene

Once the tissue has been transformed, the transformation event
occursonly ina fewplastids, andthroughselectionroundsor thebar-
nase–barstar system [30], the population of non-transformed plas-
tids is diluted. The selection rounds are necessary because inducing
regeneration from tissue derived from only one selection round
could result in a chimeric shoot with both transformed and non-
transformed plastids with less production of recombinant proteins,
which do not always successfully transfer transgenes to progeny
[31].

The experience has shown that two or three selection rounds
have been sufficient to obtain homoplasmic plants [31,32]. The
selection has been facilitated using portable selectable markers
because they are already assembled within the expression vector
[33].

Historically, the expression of the rrn16 gene with specific
mutations allowed for resistance against spectinomycin; however,
the subsequent expression of the aadA gene (coding for aminogly-
Name Selection marker Ref.

benthamiana and Tobacco aadA [35,180,181,182]

Tomato aadA [37]
Potato aadA [72,183]
Petunia aadA [40]
Eggplant aadA [184]
Pepper aadA [185]
Arabidopsis aadA [36]
Oilseed rape aadA [38]
Lesquerella aadA [31]
Cauliflower aadA [42]
Cabbage aadA [186]
Rapeseed aadA [187]
Cotton aphA-6, nptII [45]
Carrot aadA, badh [39]
Soybean aadA [41]
Alfalfa aadA [188]

sco Lettuce aadA [57,189,190]
Artemisa aadA [191]
Poplar aadA [192]
Sugar beet aadA [193]
Sweet broom aadA [77]
Bitter melon aadA [43]

ung Rice aadA, hpt [5,155]

- aadA [34]
- aadA [194]
- aadA [195]
- ereB [51]
- Mutated ahas

(W492S)
[60]

- cat [196]
- cat [49]
- cat [197]
- ble [50]
- bar [198]

Moss aadA [199]

Umbrella
liverwort

aadA [200]



Fig. 1. Schematic representation of tobacco chloroplast transformation via biolistic. (a) Typical cassette of recombination of plastid transformation vectors which contains a
gene of interest and a selection marker gene (P, promoter; 5ʹ and 3ʹUTR, untranslated region; HRS, homologous recombination site; GOI, gene of interest; SMG, selection
marker gene); both, the selection marker gene and the gene of interest can be mounted on the vector to be transcribed in the same direction or placed in opposite directions. A
homologous recombination site flanks the expression cassette to drive the cassette into a specific region into the chloroplast genome taken from the wild-type plastid
genome. (b) The plasmid DNA is coated on gold or tungsten microparticles and then shot on sterile young leaves using a gene gun. (c) The bombarded leaves are cut and
placed on regenerated media with appropriate hormones and antibiotics. (d–f) The explants are placed in two or three selection rounds to obtain homoplasmic shoots. (g and
h) The regenerating shoots are transferred to the regeneration medium without antibiotics and eventually to pots. Transplastomic plants can produce antibodies, vaccines,
vitamins, synthetic drugs, therapeutic proteins, fortified foods, and industrial enzymes within ~15 months, depending on the species.
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coside 300-adenylyltransferase), described by Goldschmidt-
Clermont [34] in Chlamydomonas reinhardtii, allowed researchers
to obtain resistance in the transformed shoots against spectino-
mycin/streptomycin. Later, the aadA gene was used by Svab and
Maliga [35] to transform tobacco plants, obtaining up to a 100-
fold frequency of transformation. These results were so satisfactory
that the aadA gene is still used today for the transformation of var-
ious plant species e.g., Arabidopsis [36], tomato [37], oilseed rape
[38], carrot [39], petunia [40], soybean [41], cauliflower [42], and
bitter melon [43] (Table 1).

In the transformation of plant chloroplasts, other selection mar-
ker genes have also been reportedly used for the selection of trans-
formed cells. In plants, the following genes have been reported:
nptII gene (neomycin) [44], aphA-6/nptII genes (kanamycin) [45],
hpt gene (hygromycin) [5], aac(60)-Ie/aph(200)-Ia gene (tobramycin
and gentamicin) [46], aphA-6 gene (amikacin) [45], and cat gene
(chloramphenicol) [47]; in algae, the following genes have been
reported: aphA-6 gene (amikacin) [48], cat gene (chloramphenicol)
[49], ble gene (zeocin) [50], and ereB gene (erythromycin) [51].

Despite the high selection efficiency using antibiotics, they can
cause tissue damage; hence, non-antibiotic selection markers have
been reported. In plants, the following have been reported: betaine
aldehyde dehydrogenase (badh gene) [52], and D-serine ammonia-
lyase (dsdA gene) [53]; in algae, the following have been reported:
cytosine deaminase (codA gene) [54], and phosphite oxidoreduc-
98
tase (ptxD gene) [55,56]. On the other hand, markers that are
dose-dependent have been reported in plants: the mutated ahas
gene from Arabidopsis thaliana, which confers tolerance to imaza-
pyr [57], 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS)
gene, which confer resistance to glyphosate [58], and the bar gene
that confers resistance to phosphinothricin [59]; for algae, the fol-
lowing have been reported: the mutated acetohydroxyacid syn-
thase gene [AHAS(W492S)], which confers tolerance to
sulfometuron methyl [60]. However, the use of herbicides for
selection is known to have a detrimental effect on the recovery
of transformed cells [61].

Although the use of selection genes is mandatory for the recov-
ery of transformed cells, the conservation of these genes is no
longer necessary after selection. Also, there is a risk of transfer to
the environment [62]. Recently, the idea of using Clustered Regu-
larly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) (CRISPR/Cas9) to design chloroplast
genomes and thereby, the possibility of eliminating genes of resis-
tance, has been proposed [63]. Yet, the specific bombardment of
plastid with CRISPR/Cas9 binary vector or its counterpart Cas9/
gRNA ribonucleoproteins cannot be controlled. The impermeability
of plastids to most RNA and DNA limits CRISPR/Cas9 use in the
plastid [64]. Nonetheless, the results obtained by Yoo et al. [65]
in Chlamydomonas chloroplasts open the door to engineering orga-
nelle genomes. They demonstrated, for the first time, the editing of
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the chloroplast genome with Cas9 to integrate DNA with high pre-
cision in the plastome; although these results are highly promising,
plastid editing is still underexplored [63], and the selection of mar-
ker genes must still be eliminated using the Cre/loxP system
[66,67], phiC31 phage site-specific integrase [68], and the directly
repeated DNA sequences [62,69].
3.3. Regulatory sequences

The main objective of plastid transformation technology is to
obtain high levels of protein expression and, because of this, it
has sought to increase the abundance of mRNA. For such a purpose,
different promoters (P) have been used to drive the genes of inter-
est. A promoter with high efficiency to drive the gene expression is
the rrn promoter (rrn gene), which is more than 12 times more effi-
cient than the psbA or trc promoters in tobacco chloroplast [70], so
much so that the rrn promoter is widely used today in plastid
transformation. Other promoters have also been used in plastid
transformations, such as PT7 [71], PclpP [72], PatpI [73], PrbcL
[74], PaccD [75,76], and the synthetic promoter PNG1014a [77].
Recently, a complete modular cloning system was developed
specifically for chloroplast transformation, containing 47 charac-
terized and uncharacterized chloroplast promoters and modified
versions of endogenous promoters. This constitutes a valuable
and flexible tool for plastid metabolic engineering in plants [78].

To stabilize the mRNA and propitiate the mRNA accumulation,
different 50 and 30 untranslated regions (50 and 30 UTRs) have been
tested, such as 5ʹUTR from T7g10, rbcL, atpB, psbA, psbN, ndhF genes
[72,79,80,81,82,83], as well as 3ʹUTR from rbcL, rps16, psbA, rrnB,
petD, rpoA genes [72,73,79,80,84]. The use of these regions is
important because they are recognized by proteins that protect
the mRNA against exonucleases, so the loss of these regulatory ele-
ments leads to the fast degradation of transcripts.

Even though promoters and 5ʹ and 3ʹUTR could be optimized,
the accumulation level of recombinant proteins in plastids cannot
be anticipated because the abundance of chloroplast proteins is
mainly controlled at the post-transcriptional level [85]. Another
limitation is that protein accumulation could be affected by protein
degradation caused by the housekeeping machinery in response to
protein misfolding. This could be avoided by sending the recombi-
nant proteins into the thylakoid lumen using transit peptides such
as the 23-kDa protein of the oxygen-evolving system of photosys-
tem II (Str) because, in thylakoids, proteins are not susceptible to
degradation as in stroma, which improves their accumulation—
see the report by Morgenfeld et al. [7,86].
4. Chloroplast engineering for the Biopharmaceutical industry

The use of plants to produce chemical compounds with nutri-
tional and pharmaceutical interest has always been a goal of
biotechnology, so much so that, from 2016 to 2020, there was a
growth of 18% in products (1357–1666 products) approved by
the Foods and Drugs Administration (FDA) and European Medici-
nes Agency (EMA) for use in humans, including products with dif-
ferent formulations, biosimilars, and biobetters [87]. The
chloroplast has already begun to contribute, expressing vaccines,
enzymes, antibodies, and plasma proteins.

Nineteen years have passed since Daniell et al. [88] expressed
the first candidate antigen to vaccinate against a human disease
in tobacco chloroplast. Later, other proteins, such as 2L21 peptide
against virulent canine parvovirus [89] and Human Serum Albumin
(HAS) [90], were also expressed in tobacco, showing the potential
of chloroplasts in the biopharmaceutical area, so much so that by
2009, there were already 23 antigens expressed against 16 differ-
ent organisms [91].
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In the protein expression in plastids, the cholera toxin B subunit
(CTB) fused with proteins of interest has been used as an effective
transmucosal carrier and immunogen that elicits mucosal antibody
responses and oral tolerance [89,92,93]. Currently, several CTB-
fused proteins have been reported, such as exendin-4 (CTB-EX4),
whose product increased insulin secretion in pancreatic cells from
mouse (beta-TC6) [94], angiotensin-converting enzyme 2 and
Angiotensin-(1–7) (CTB-ACE2 and CTB-Ang-(1–7)), tested against
pulmonary hypertension (PH) and ocular inflammation [95,96],
myelin basic protein (CTB-MBP) against Alzheimer’s disease [97],
coagulation factor VIII-CTB against hemophilia A [98], acid alpha-
glucosidase (CTB-GAA) against Pompe disease [99], coagulation
factor IX-CTB against hemophilia B [100], the 6 kDa early secretory
antigenic target (CTB-ESAT-6), and the a fusion polyprotein
Mtb72F (CTB-Mtb72F) against tuberculosis [101] (Table 2). It is
worth noting that CTB seems to promote protein accumulation,
which has been demonstrated from the low levels of ESAT-6
non-fused to CTB reported by Saba et al. [71]. In this respect,
Human transferrin (hTf) was reported as a fusion protein in nuclear
transformation [102]; however, no protein currently expressed in
plastids has used this fusion protein. Human transferrin could be
used in chloroplast transformation for improving the therapeutic
efficacy of biopharmaceutical proteins since transferrin is non-
toxic. There are transferrin receptors in the epithelium and prolif-
erating human cells [102,103], promoting the uptake of therapeu-
tic proteins.

Recently, Rosales-Mendoza et al. [104] reported the efficient
and simultaneous expression of KETc1, KETc7, KETc12, GK1, and
TSOL18/HP6-Tsol antigens against cysticercosis and Morgenfeld
et al. [7] reported the expression of human epidermal growth fac-
tor (hEGF) in tobacco chloroplasts. To date, not a single plant/
chloroplast-based vaccine against human diseases is on the mar-
ket. The only one approved by the U.S. Food and Drug Administra-
tion has been the human glucocerebrosidase made in carrot cells to
treat Gaucher’s Disease using a nuclear expression system [105].

The results obtained so far with recombinant proteins in plastid
have been promising. The fact that the plant cell walls protect the
proteins expressed in the chloroplast, like a biocapsule, gives it
enormous potential [106]. However, the absence of glycosylation
in the plastids could be a limitation to the production of biophar-
maceutical proteins that require this modification in order to be
active. Some proteins do not require glycosylation, and it is possi-
ble to work with those proteins; hence, plastid transformation effi-
cacy could increase in subsequent years.
5. Chloroplast engineering for agronomic traits

The insertion of genes in plastids covers different areas of inter-
est; we have been attracted to the possibility of eliminating ecolog-
ical problems currently associated with nuclear-modified plants
and the overexpression of recombinant proteins. Several works
have been reported on chloroplast transformation focused on plant
protection against biotic and abiotic stress, as well as on improving
the nutritional quality of crops, which has marked the way forward
in this field.
5.1. Pest and disease resistance

Insect resistance mediated by chloroplast expression dates back
to 1995, with the production of Cry1Ac, an extremely toxic protein
to larvae of Heliothis virescens, Helicoverpa zea, and Spodoptera exi-
gua by McBride et al. (1995) [107]. Since then, there have been
promising studies that attempt to obtain a high accumulation of
insecticidal proteins expressed in the plastid, at least of the Cry
proteins (Cry2Aa2, Cry1Ia5, Cry9Aa2, Cry1Ab) to protect against



Table 2
Plastid transformation, advances in biopharmaceutical products.

Gene Product Selection rounds Promoter 5ʹUTR 3ʹUTR Chloroplast
region

Selection
marker

Total soluble
protein (TSP)

Host Ref.

HSA Human Serum Albumin 2 psbA psbA psbA trnI-trnA aadA 11.1% Tobacco [90]
2L21-CTB Parvovirus 2L21 epitope-CTB 2 psbA psbA psbA trnI-trnA aadA 31.1% Tobacco [89]
gag Pr55gag 2

2
rrn
rrn

rbcL
T7g10

rbcL
rbcL

rps12/7-
trnV

aadA
aadA

6.75%
0.26%

Tobacco [170]

A27L A27L immunogenic protein 2 rrn T7g10 rbcL rps12/7-
trnV

aadA 18% Tobacco [172]

EX4 Exendin-4 * psbA psbA psbA trnI-trnA aadA 14.3% Tobacco [94]
ESAT-6 ESAT-6 protein-Mtb72F * psbA psbA psbA trnI-trnA aadA 7.5%

1.2%
0.75%

Tobacco

Lettuce

[101]

ACE2 Angiotensin-converting enzyme 2 2 psbA psbA psbA trnI-trnA aadA 2.14% Tobacco [96 95]
Ang-(1–7) Angiotensin (1–7) 2 psbA psbA psbA trnI-trnA aadA 8.7% Tobacco [9695]
MBP Myelin basic protein 2 psbA psbA psbA trnI-trnA aadA 2% Tobacco [97]
F8 Coagulation factor VIII 2 psbA psbA psbA trnI-trnA aadA 4.2% Tobacco [98]
E7 E7 Human papillomavirus antigen 3 psbA psbA rps rrn16-trnI aadA ~8% Tobacco [86]
GAA Alpha glucosidase 2 psbA psbA psbA trnI-trnA aadA 0.21% Tobacco [99]
F9 Coagulation Factor IX 2 psbA psbA psbA trnI-trnA aadA 0.63% Lettuce [100]
SAG1 SAG1 Surface antigen 2 psbA psbA psbA trnI-trnA aadA 2.5% Tobacco [201]
* KETc1

KETc7
KETc12
GK1
TSOL18/HP6-Tsol

3 rrn T7g10 rbcL trnN-trnR aadA 0.1%
~0.14%
0.4%
0.45%
0.54%

Tobacco [104]

ESAT-6 ESAT-6 protein 3 T7 T7g10 T7 trnN-trnR aadA 1.2% Tobacco [71]
hEGF Human epidermal growth factor 3 psbA psbA rps rrn16-trnI aadA a Tobacco [7]

a Indicates observed adequate gene expression, but no quantification.
* Indicates not reported.
FW: Fresh weight
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Phthorimaea operculella, Plutella xylostella, Helicoverpa armigera,
and Anticarsia gemmatalis [108,109,110,111]. Wu et al. [112]
reported the first expression of the cry1C gene in poplar, showing
high toxicity to Hyphantria cunea and Lymantria dispar.

The Cry proteins seem to have taken the lead in ‘green insecti-
cides’. Nevertheless, nuclear transformation has shown that insects
can develop resistance to cytoplasmic Cry proteins [113]; however,
compartmentalizing the Cry proteins in the chloroplast could be an
option to increase the accumulation levels of these proteins and
thus prevent insect resistance. In this respect, directing the pro-
teins towards the chloroplast using transit peptides has been pro-
posed, e.g., Cry1Ac, Cry1Ah, and Tvip3A* proteins [114,115,116].

Other insecticidal proteins expressed in the chloroplast have
been tested, such as MSI-99, a magainin-type antimicrobial pep-
tide reported by DeGray et al. [117], which was effective against
Pseudomonas syringae, Colletotrichum destructivum, Verticillium dah-
lia, Fusarium moniliforme, and Aspergillus. Later, Wang et al. [118]
reported the MSI-99 effectiveness against Alternaria alternata and
E. coli. Pinellia ternata agglutinin (pta gene) has also been shown
to be effective against Bemisia tabaci, Myzus persicae, Helicoverpa
zea, Heliothis virescens, Spodoptera exigua, Erwinia carotovora, and
tobacco mosaic virus [119]. The chloroperoxidase (cpo gene) from
Pseudomonas pyrrocinia also was reported to protect against Asper-
gillus flavus, Fusarium verticillioides, Verticillium dahlia, and Alter-
naria alternata [120]. Although the proteins mentioned above
were efficiently expressed in tobacco chloroplasts, they still need
to be explored in more detail to avoid the detrimental effect that
overexpression of some of these proteins on the plant phenotype
[118].

5.1.1. RNAi against pests and diseases
Until recently, the plastid transformation to confer resistance to

pests and diseases has focused on expressing specific proteins, pro-
moting their accumulation in the plants. However, the expression
of interference RNA (RNAi) in plants to silence specific essential
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genes within herbivorous pest (trans-kingdom RNA interference,
TK-RNAi) has gained momentum because it eliminates protein
dependency the possible problems associated with them in both
plants phenotype and ecosystem.

The expression of RNAi in plants to silence specific genes has
already been tested in an effective form through nuclear expres-
sion using double-stranded RNAs (dsRNA) and long hairpin RNA
(hpRNA) [121,122,123]. One of the challenges for RNAi technol-
ogy’s efficiency is to ensure viable delivery in insects. Due to this
difficulty, oral administration is one of the most attractive methods
in practice [124,125]. The host’s digestive system degrades the
RNAi, so high RNA concentrations are required in the artificial diet
[126], which is another challenge by itself, because, with nuclear
expression, the accumulation of RNAi is affected by the cell’s RNAi
machinery, which decreases the amount of unprocessed dsRNA or
hpRNA available to pest ingestion [127,128].

The most viable solution to ensure the accumulation and stabil-
ity of the RNAi would be to use the chloroplast as a natural method
of bioencapsulation to protect them. In addition, the chloroplast
has almost no RNAi processing machinery, if any, there is no trans-
ference of RNAi from the chloroplast to the cytoplasm [106].

The efficient expression of RNAi in chloroplast has already been
reported by Jin et al. [126] in tobacco using a dsRNAs to silence
chitin synthase (Chi gene), cytochrome P450 monooxygenase
(P450 gene), and V-ATPase from Helicoverpa armigera, reducing
the weight and growth of larvae. dsRNA was also used by Zhang
et al. [128] in potato chloroplast to silence the b-actin (ACT gene)
and Vps32 (SHR gene) from Colorado potato beetle, resulting in
reduced larval growth. On the other hand, the dicing of dsRNA into
siRNA by the plant’s intrinsic RNAi machinery may reduce dsRNA’s
pesticidal activity. In order to avoid this, Bally et al. [106] used
hpRNA (~200 nt) targeting the acetylcholinesterase (ACE gene) of
Helicoverpa armigera in tobacco chloroplast, obtaining full-length
hpRNAs with strong protection against H. armigera herbivory. In
this sense, it has been reported that dsRNA with a length of 200
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nt is more protective than a dsRNA of 60 nt or >200 nt [129]. There
also appears to be a negative correlation between the dsRNA’s
length and accumulation [129,130].

Although the chloroplast produces and stores large amounts of
dsRNA and hpRNA, the RNAi presents contradictory studies, e.g.,
Dong et al. [131] reported more effective insecticidal activity with
RNAi produced by nuclear expression than by expression in
tobacco chloroplast. Despite the difficulties that have arisen in this
field, the RNAi can be an important tool in plant biotechnology, and
dsRNA produced in chloroplast could be a significant area of oppor-
tunity because this field of research would impact the agronomic
sector and could also be used to down-regulate genes associated
with human diseases.
5.2. Abiotic stress tolerance

Reactive oxygen species (ROS) are forms of oxygen that are par-
tially reduced and routinely produced during normal metabolic
processes such as photosynthesis or cellular respiration, and under
biotic and abiotic stress. Due to the light-dependent electron trans-
port processes, the chloroplast is an essential ROS factory because
they have a high capacity for the oxidation of lipids membranes,
nucleic acids, and proteins, causing cell damage [132].

Decreasing ROS in plants has been a target for many years in
order to avoid the effects of damage caused by stress. To this
end, much interest has been paid for expressing in plastids pro-
teins, such as superoxide dismutase (MnSOD gene), glutathione
reductase (gor gene) [133], dehydroascorbate reductase (DHAR
gene), glutathione-S-transferase (GST gene) [134,135], and arabitol
dehydrogenase (ArDH) [136], which all show a direct impact on the
plant’s tolerance to different types of abiotic stress, such as UV-B
radiation, heavy metal, salt, cold, and osmotolerance [137]. Plastid
expression has been used to express betaine aldehyde dehydroge-
nase (badh gene) [39], otsB-A operon (trehalose phosphate syn-
thase/phosphatase) [138], homogentisate phytyltransferase (HPT
gene), tocopherol cyclase (TCY gene), c-tocopherol methyltrans-
ferase (TMT gene) from Synechocystis sp. [139], and flavodoxin
(fld gene) from Anabaena sp. [140], conferring tolerance to cold
stress, salinity, and drought.

The enhancement of plant tolerance against abiotic stress has
been proposed, mostly targeting the glycine betaine (GB) to the
chloroplast in order to increase the antioxidant pathway [134]. In
this sense, choline monooxygenase (BvCMO), which catalyzes cho-
line conversion to betaine aldehyde, has been tested in tobacco
plants. Choline oxidase (codA) from Arthrobacter globiformis has
been tested in potato plants to increase GB [141,142]. The results
have shown plants with salt tolerance, higher relative water con-
tent levels, and normal chlorophyll content under drought stress
conditions, indicating that it is feasible to improve the GB pathway
in plastids.

In the search for plants that are tolerant against biotic and abi-
otic stresses, the chloroplast’s ability to express multiple genes has
also been used. Sporamin (from Ipomoea batatas), cystatin (from
Colocasia esculenta), and chitinase (from Paecilomyces javanicus)
genes were simultaneously expressed protecting against methyl
viologen, salt, and osmotic stress, respectively, also displaying tox-
icity to Spodoptera litura, Spodoptera exigua, Alternaria alternata,
and Pectobacterium carotovorum subsp. carotovorum [143].

The available reports suggest that the expression of proteins in
plastids is a valuable and viable tool to improve tolerance against
abiotic stress in plants. This is an issue that requires further review
to establish the metabolite or the most feasible metabolic path-
ways that can be modified in order to produce an efficient biotic
and abiotic stress tolerance, as well as the consequences on plant
physiology.
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5.3. Herbicide resistance

Herbicides used to eliminate unwanted plant species are an
essential part of the agricultural market—driving the agronomic
interest in species resistant to herbicides, another major plant
biotechnology objective.

One of the most widespread chemical products to control
weeds is glyphosate. This broad-spectrum post-emergent systemic
herbicide inhibits EPSPS, which is required for the biosynthesis of
aromatic amino acids. Glyphosate-resistant crops have been devel-
oped by modern agriculture to facilitate weed control [144]; in this
regard, work has been done to incorporate new resistance to plants
against other herbicides to benefit agriculture.

Although studies of herbicide-resistant plants have been carried
out mainly by nuclear expression, the study of the chloroplast’s
capacity to express genes that can promote herbicides’ resistance
has already been studied (Table 3). It has been 22 years since
Daniell et al. [145] reported the obtaining of glyphosate-resistant
transplastomic tobacco plants by the overexpression of the wild-
type petunia EPSPS gene that resisted ~ten times the lethal dose;
since then, increased resistance has been desired through the use
of synthetic EPSPS, EPSPS from other organisms such as the CP4
gene from Agrobacterium, one of the most highly glyphosate-
resistant EPSPS, and also by the expression of the aroA gene, which
is indispensable for the accumulation of EPSPS [58,146,147].

On the other hand, multiple genes have been successfully
expressed in plastids to confer herbicide resistance. The bacterial
bar gene was expressed in tobacco to protect against phos-
phinothricin (PPT), resulting in a resistance of up to 50 mg L�1

[148]. Moreover, the hppd gene from Pseudomonas fluorescens
was expressed in tobacco and soybean plastids, providing strong
tolerance to isoxaflutole, accumulating 5% of TSP [149]. Also, spo-
ramin, cystatin, chitinase [143], dehydroascorbate reductase
(DHAR gene), glutathione-S-transferase (GST gene), and glutathione
reductase (gor gene) [134] were expressed in tobacco chloroplast
protecting against methyl viologen (Paraquat).

In addition, protection against chlorophenylthio-triethylamine
(CPTA) has been obtained in tobacco and tomato plants by the
expression of the bacterial lycopene b-cyclase (crtY gene) in plas-
tids [73]. The protection against sulcotrione was obtained with
the expression of hydroxyphenylpyruvate dioxygenase (hpd gene)
[150], whereas protection against pyrimidinylcarboxylate, imida-
zolinone, and sulfonylurea herbicides was obtained via the expres-
sion of a mutated acetolactate synthase (mALS) gene [151].
Recently, Stavridou et al. [135] confirmed the use of glutathione
transferase (GST gene) in chloroplast to obtain Diquat-herbicide
tolerance.

Although there have been advances in developing herbicide-
resistant plants by plastid transformation, the majority of reports
are on tobacco—reports on agriculturally relevant plants are lim-
ited [149]. Some aspects need to be further investigated to ensure
efficient herbicide resistance through plastid transformation, such
as the gene that must be expressed to provide efficient protection,
the maximum expression cassette size that the chloroplast can
support, the effect of these recombinant proteins on the integrity
of plants and, moreover, how the protein production in floral and
vegetative meristems, whose cells have fewer plastids, can be
increased.
6. Chloroplast genetic engineering in monocots

Plants are an attractive system for recombinant proteins of agri-
cultural interest, with minimal risk of contamination with animal
pathogens [152]. The nuclear transformation has led to agronomi-
cally important crops’ development with protection against



Table 3
Plastid transformation, advances in agronomic traits.

Gene Product Selection
rounds

Promoter 5ʹUTR 3ʹUTR Chloroplast
region

Selection
marker

Total soluble
protein (TSP)

Host Ref.

Resistance to pest and diseases
cry2Aa2 Cry2Aa2 2 rrn * psbA trnI-trnA aadA 46.1% Tobacco [109109]
cry1Ia5 Cry1Ia5 4 psbA psbA psbA rbcL-accD aadA 3% Tobacco [202]
cry1Ab Cry1Ab 3 rrn rrn psbA rrn16-trnI aadA 11.1% Cabbage [108]
cry1C Cry1C * rbcL * E. coli

thra
rbcL-accD aadA 1% Tobacco [74]

cry1Ab Cry1Ab * rrn T7g10 rbcL rps12/7-
trnV

aadA a Soybean [111]

cpo Chloroperoxidase 3 rrn psbA psbA trnI-trnA aadA a Tobacco [120]
pta Pinellia ternata agglutinin 2 psbA psbA psbA trnI-trnA aadA ~9.2% Tobacco [119]
MSI-99 Magainin-type antimicrobial

peptide
3 rrn T7g10 rps16 trnI-trnA aadA 89.75 mg/g�FW Tobacco [118]

cry1C Cry1C 3 rrn T7g10 rrnB trnfM-trnG aadA 20.7 mg/g�FW Poplar [112]

Abiotic stress tolerance
Gor MnSOD Escherichia coli glutathione

reductase
Superoxide dismutase

3 rrn rbcL rbcL rps12/7-
trnV

aadA a Tobacco [133]

DHAR GST gor Dehydroascorbate reductase
Glutathione-S-transferase
Glutathione reductase

3 rrn * psbA rbcL-accD aadA 0.79% Tobacco [134]

fld Flavodoxin 3 rrn psbA rps16 rrn16-trnI aadA ~11 mmol Fld m�2 Tobacco [140]
HPT TCY TMT Homogentisate phytyltransfera

Tocopherol cyclase c-tocopherol
methyltransferase

2 rrn T7g10 rbcL
rps16

psbH-petB
rps2-atpI

aadA a Tobacco
Tomato

[139]

ArDH Arabitol dehydrogenase ~2 psbA psbA psbA trnI-trnA aadA a Tobacco [136]
CMO Choline monooxygenase ~4 rrn T7g10 rps trnfM-trnG aadA a Tobacco [141]
codA Choline oxidase * rrn T7g10 rrnB trnfM-trnG aadA a Potato [142]
* Sporamin

Cystatin
Chitinase

4 rrn * psbA trnI-trnA aadA ~1% Tobacco [143]

Herbicide resistance
CP4 CP4 EPSPS ~3 rrn rbcL

T7g10
rps trnV-rps7/3 aadA ~0.002%

0.3%
Tobacco [58]

hppd 4-hydroxyphenylpyruvate
dioxygenase

2 psbA psbA rbcL rbcL-accD aadA 5% Tobacco
Soybean

[149]

aroA 5-enoylpyruvyl shikimate-3-
phosphate synthase

3 rrn * rbcL * aadA a Tobacco [146]

mALS Mutated acetolactate synthase * psbA * psbA rbcL-accD aadA a Tobacco [151]
crtY Bacterial lycopene b-cyclase 4 atpI * rps16 trnfM-trnG aadA a Tobacco

Tomato
[73]

hpd 4-hydroxyphenylpyruvate
dioxygenase

* rrn * * rps12-
orf131

aadA a Tobacco [150]

bar Phosphinothricin 3 rrn * psbA trnI-trnA aadA a Tobacco [148]

a Indicates observed adequate gene expression, but no quantification.
* Indicates not reported.
FW: Fresh weight
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insects, herbicide resistance, drought tolerance, salt tolerance, and
phytoremediation. Although there have been advances in develop-
ing plants through plastid transformation, monocot crops limit this
technology’s expansion [5]. Though chloroplast genetic transfor-
mation is still very incipient in monocots and there are limited
reports, these begin to show strategies that must be considered
to address this field, which has the potential to change
agrobiotechnology.

The first attempts date from 1991 when Daniell et al. [153],
using a double psbA promoter from pea, achieved the transitory
expression of uidA gene within the chloroplasts of wheat although
without stable expression; however, their results showed that
dicot chloroplast promoters could be functional in the chloroplasts
of monocots. Eight years later, using callus, Khan and Maliga [154]
reported a stable plastid transformation in rice (Oryza sativa cv.
Taipei 309), introducing the biofunctional marker gene FLARE-S
(Fluorescent Antibiotic Resistance Enzyme, Spectinomycin, and
Streptomycin) into rrn16-rps12/7 chloroplast regions, obtaining
102
heteroplasmic plants; however, the transgene transmission to sub-
sequent generations could not be verified. Later, using calli, the
aadA and sgfp genes were inserted into trnI-trnA region of the
chloroplast genome from japonica rice (Oryza sativa L. cv. Hwa-
Chung) with lower transformation efficiency and remaining
heteroplasmy, but producing fertile plants with transgenes
expressed in the progeny [155]. These results on monocots’ plas-
tids are significant because cereals are an essential source of calo-
ries and protein in the human diet [156].

In recent years, gfp and nptII genes were inserted into atpB-rbcL
intergenic region from wheat (Triticum aestivum L. cv. Bobwhite),
obtaining homoplasmic plants in T0 generation using scutella,
and heteroplasmic plants with immature inflorescences [157].
Although the results were promising, they could not be confirmed
and the results were retracted, pending further experimentation
[158].

Currently, satisfactory progress has been made in rice. In 2018,
callus from the japonica rice line 19 was transformed with the
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soluble-modified Green Fluorescent Protein (smGFP gene) and the
selection marker gene hygromycin phosphotransferase (hpt gene)
by inserting them into the trnI-trnA region of the rice chloroplast
genome, obtaining homoplasmic plants after one year of screening
[5]. Despite this success, the material did not reach the seed stage,
so it was not possible to determine whether the plants were sterile
or not. Hence, the chloroplast transformation in monocots is still a
proof of concept.

Zea mays is an efficient platform to study plant genes’ function-
ality, but above all, because it is one of the most important crops
worldwide. Unfortunately, maize plastid transformation has never
been successful.

Recently, our research group constructed two vectors to trans-
form maize (Zea mays tropical variety ‘‘LPC13” line) and wild type
grass Bouteloua gracilis (Willd. ex Kunth) Lag. ex Steud, respec-
tively, which contain the Green Fluorescent Protein reporter (mgf-
p5 gene) and the selection marker gene hygromycin
phosphotransferase (hpt gene), driven by an rrn16 promoter
flanked by the trnA-trnI chloroplast regions [159]. Both vectors
were tested using immature embryos from young maize seeds
observing green fluorescent points in scutellum, suggesting that
vectors’ functionality can direct genes to plastid monocots, but this
is not yet confirmed.

Monocots have been recalcitrant to plastid transformation due
to several hurdles that need to be resolved promptly, such as the
gene transfer methods, the development of an efficient plant
regeneration media, and the strategies to reduce DNA loss content
per plastid in seedlings on light conditions. It could decrease the
number of transformed chloroplast, preventing regenerate plants
[160]. In this sense, a significant limitation is the low transforma-
tion efficiency in monocots; however, the use of Transcription
Activator-Like Effector Nucleases (TALENs) has given promising
results [161].

Another limitation is the gene expression in non-green plastids,
as the transformation of cereals starts from non-green tissues like
scutella or callus. Most of the genes in non-green plastids are
highly down-regulated, except for accD and clpP genes [162],
which are important for the lipid metabolism and proteolytic
machinery in the plastid. Hence, the use of regulatory sequences
from these genes to express genes in the plastids of cereal crops
may allow the recovery of transformants in selective media.

A limitation of chloroplast transformation is the necessary
development of a new vector for each plant species. Although uni-
versal vectors containing the trnI-trnA genes from the inverted
repeat region have been proposed [145] (as well as vectors con-
taining the trnfM-trnG, ndhB-trnL, and rrn16-trnV regions [163]),
the intergenic spacer regions in chloroplast genomes are not
well-conserved [4]. The loss of homology between sequences from
transformation vectors and chloroplast genome decreases the fre-
quencies of transformation [37,164,165]. It could also decrease
the expression level up to 90% [4,81,166]; therefore, currently,
there are no vectors used in all crops.

It has been observed that complete chloroplast genomes can
move between cells from one species into another across the graft
junction as an organelle capture process. This raises the possibility
of grafting donor plant tissue containing transformed plastids into
a recipient plant tissue, allowing the migration of transplastomic
plastids into the untransformed tissues [167,168]. Perhaps this
strategy could be used in monocots—this remains unexplored.

Despite the recalcitrance of monocots to plastid transformation,
it is evident that plastid technology is a tool that can enhance the
biosafety of genetically modified plants. Efforts must be focused on
solving the limitations in cereal crops because they will extend
plastid transformation to a broader set of plant species.
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7. Pleiotropic effects in transplastomic plants

In most reports, the expression of recombinant proteins in plas-
tids does not alter the plant’s phenotype. Some reports indicate
that the expression of recombinant proteins could generate abnor-
mal phenotypes that include yellow leaves, reduced growth of
transformed plants, and male sterility. In many cases, the abnormal
phenotype gradually disappears or does not affect the growth and
development of plants [23,169]; however, in others, this pheno-
type affects plants’ development [6] (Table 4).

Scotti et al. [170] reported a slower growing and chlorotic phe-
notype from in vitro culture to maturity and a protein decrease of
up to 50% when the HIV-1 Pr55gag polyprotein was expressed in
tobacco chloroplasts. Similar phenotypes were obtained with the
expression of HIV-1 proteinNef in tobacco and tomato plants; 30%
of transplastomic lines had yellow tissues [171]. Rigano et al.
[172] expressed the A27L immunogenic protein of the vaccinia
virus. Although neither flowering nor seed setting was affected in
transplastomic lines, the plants showed slower growth and had a
slightly chlorotic phenotype. Waheed et al. [173,174] used the
L1_2xCysM gene expression obtaining a pale microcalli and male-
sterile transplastomic tobacco lines, with flowers that fell before
maturity or did not produce seeds, and that could only produce
seeds by cross-fertilization with pollen from wild-type tobacco.
Further, the expression of aprotinin showed plants with a pale
green phenotype that also grew more slowly compared to wild-
type tobacco and with delayed seed production [175], the same
as E7 Human papillomavirus antigen [86], and Human epidermal
growth factor (hEGF) [7].

Sometimes, abnormal phenotypes have some utility and can be
used as biosafety improvement or adaptation in modified organ-
isms. For example, Ruiz and Daniell [176] used plastid transforma-
tion via an abnormal phenotype product of the b-ketothiolase
expression in plastid-obtained plants with the accelerated devel-
opment of anthers, which caused a collapsed morphology of the
pollen grains. This affected their maturation and led to sterility.
Through this, they designed a cytoplasmic male sterility system
in plants. An abnormal phenotype was obtained by Jin et al.
[177] with the expression of a b-glucosidase in tobacco chloroplast,
which showed an increase in biomass, height, leaf area, and tri-
chome density due to an increase in gibberellins that produced
sugar esters in transplastomic exudates, which also decreased
the populations of whitefly and aphid, resulting in a new strategy
to design tall plants with biopesticides.

To date, it is not well understood what causes all these effects or
what the solution is. However, Ruiz and Daniell [176] proposed that
abnormal phenotype is related to the type of gene expressed. In this
respect, the fact that there are reports with protein expression with
less than 2% of TSPwith pleiotropic effects [173] and reportswith an
overexpression of up to 72% of TSPwithout adverse effects on plants
[4] suggests that pleiotropic effects are not a consequence of the
overexpression of foreign proteins. Perhaps detrimental effects can
be attributed to various factors, such as the interference of the
recombinant proteins with thylakoid structure and function, inter-
ference of novel open reading frames within the cytoplasmic meta-
bolism, or lower levels of ATP production [178].

Whatever the reason for pleiotropic effects, detailed studies
regarding the metabolic pathways affected within chloroplasts
(or the interaction of the recombinant proteins with the chloro-
plast’s photosynthetic machinery) are necessary to lessen the
adverse effects. The use of strategies for inducible expression in
the chloroplast transformation can circumvent the observed detri-
mental effects in plants and about this, significant progress has
been made in recent years [179].



Table 4
Plastid transformation reports that have shown pleiotropic effects.

Gene Product Selection
rounds

Promoter 5ʹUTR 3ʹUTR Chloroplast region Selection marker Total soluble
protein
(TSP)

Host Pleiotropic effect Ref.

CelA-CelB Dicistronic cellulases type A-B 3 rrn rbcL rbcL rrn16-3ʹrps12 aadA a Tobacco Variegate phenotype [23]
CrtW

CrtZ
b-carotene ketolase
b-carotene hydroxylase

* rrn rrn rps16 rbcL-accD aadA a Tobacco Slow growth [169]

gag Pr55gag 2 rrn rbcL rbcL rps12/7-trnV aadA 6.75% Tobacco Chlorotic phenotype, slow
growth, and decreased protein

[170]

p24-Nef HIV antigens p24-Nef 4 rrn T7g10 rrnB trnfM-trnG aadA 40%
2.5%

Tobacco
Tomato

Chlorotic phenotype [171]

A27L A27L immunogenic protein 2 rrn T7g10 rbcL rps12/7-trnV aadA 18% Tobacco Slow growth and slightly
chlorotic phenotype

[172]

E7 E7 Human papillomavirus antigen 3 psbA psbA rps rrn16-trnI aadA ~8% Tobacco Sterile lines [86]
L1_2xCysM-

LTB
HPV-16 L1-LTB 5 rrn * rbcL trnN-trnR aadA 2% Tobacco Pale microcalli and no seed

production
[173]

L1_2xCysM HPV-16 L1 6 rrn T7g10 rbcL trnN-trnR aadA 1.5% Tobacco Male sterility [174]
BPTI Aprotinin 1 psbA psbA rbcL rbcL-accD aadA ~0.5% Tobacco Pale green phenotype and slow

growth
[175]

Pha b-ketothiolase 2 psbA psb psb trnI-trnA aadA a Tobacco Male sterility [176]
hEGF Human epidermal growth factor 3 psbA psbA rps rrn16-trnI aadA a Tobacco Slow growth [7]
SAG1 SAG1 surface antigen 2 psbA psbA psbA trnI-trnA aadA 2.5% Tobacco Slow growth and chlorotic

phenotype
[201]

GAA Alpha glucosidase 2 psbA psbA psbA trnI-trnA aadA 0.21% Tobacco Chlorotic phenotype [99]
MSI-99 Magainin-type antimicrobial peptide 3 rrn T7g10 rps16 trnI-trnA aadA 89.75 mg/g�FW Tobacco Slow growth [118]
bgl1C

cel6B
cel9A
xeg74

b-glucosidase
Exocellulase
Endocellulase
Xyloglucanase

3 rrn T7g10 rbcL trnfM-trnG aadA 40% Tobacco Chlorotic phenotype [203]

bgl1 b-glucosidase 3 psbA psbA psbA trnI-trnA aadA a Tobacco Increase in biomass, height,
foliar area and trichome density

[177]

a Indicates observed adequate gene expression, but no quantification.
* Indicates not reported.
FW: Fresh weight.
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8. Conclusions and future remarks

The growing demand for food for an expanding population forces
the development of modified crops with high-quality by-products.
Chloroplast genetic engineering offers a tremendous opportunity
to express a wide variety of proteins with industrial value, which,
although it is still indevelopment, has proven its potential in agricul-
tural crops and biopharmaceutical elements. Even though chloro-
plast transformation has been achieved in several crops, the most
crucial task for the coming years will be to implement plastid trans-
formation in essential crops, such as cereals. The combination of
effective tissue culture systems, gene expression in non-green plas-
tids, optimization of the regulatory sequences, and transformation
methods can help overcome limitations, such as low transformation
efficiency, difficulty in obtaining homoplasmic plants, and would
allow extending plastid transformation to a broader set of plant spe-
cies, including recalcitrant crops.

The future of chloroplast engineering still has some obstacles to
overcome. Despite these obstacles, it can reduce production costs,
produce highly bioavailable compounds, and eliminate the envi-
ronmental impact problems currently associated with nuclear
genetically modified crops.
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