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Background: Freeze-drying is known as one of the bestmethods to preserve bacterial strains. Protectant is the key
factor affecting the survival rate of freeze-dried strains. In addition, salinity, bacterial suspension concentration,
drying time, and other factors can also affect the survival rate of strains to varying degrees. At present, there are
relatively few studies on freeze-drying preservation of marine bacteria. In the present study, we performed the
freeze-drying protectant screening and optimized the preservation conditions for Pseudoalteromonas
nigrifaciens, which is widely distributed in marine environment. The protective effects of the screened
protectants were verified by 18 other marine bacterial strains.
Results: The results indicated that the combination of 5.0% (w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v)
trehalose, 10.0% (w/v) skim milk powder, 0.5% (w/v) ascorbic acid and 0.5% (w/v) gelatin was the best choice
for the preservation of P. nigrifaciens. The suggested salinity and concentration of initial cell suspension were
10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore, stationary-phase cells were the best choice for
the freeze-drying process. The highest survival rate of P. nigrifaciens reached 52.8% when using 5–10% (w/v)
skim milk as rehydration medium. Moreover, the other 18 marine strains belonging to Pseudoalteromonas,
Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus, Bacillus, and Saccharomyces were freeze-
dried under the abovementioned conditions. Their survival rates were 2.3–95.1%.
Conclusion: Collectively, our results supported that the protectant mixture and parameters were beneficial for
lyophilization of marine bacteria.
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1. Introduction

Long-termpreservation of bacterial strains plays a fundamental role in
scientific research and application of microbiology. In general, ultra-low
temperature is commonly used for the preservation of microorganisms
[1]. However, it has many intrinsic drawbacks such as short storage
time and necessity of regular subculture. Continuous subculture in vitro
would cause changes in physical and chemical characteristics [2].
idad Católica de Valparaíso.
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Freeze-drying is generally accepted as an effective technique for long-
term preservation of biological materials such as eukaryotic cells [3],
bacteria [4], viruses [5], and functional proteins [6]. Biological cells have
to experience two types of environment stress, freezing and drying,
leading to inevitable damages. These damages include mechanical
damage, solution effect damage, membrane permeability change,
proteins denaturation, pH dynamic balance disturbance, cell membrane
fatty acid composition and permeability change.

To obtain the highest cell survival rate, many factors during freeze-
drying process have been widely investigated, such as damage
mechanisms [7], protectants or additives [8,9], freeze-drying condition,
and parameter optimization [10]. The protectant composition is usually
considered as the most important factor to affect the survival rate of
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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Fig. 1. The survival rates of P. nigrifaciens in the presence of different single protectants.
Standard deviations were added in the line chart.
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cells during freeze-drying. Appropriate protectants can reduce cell
damage during freeze-drying and rehydration, maintain their
physiological activity and store stability during long-term preservation.

There are various microbial resources in marine environment. Marine
microbial strains collection, identification and preservation can provide
more abundant material sources for humans. The establishment of
freeze-drying preservation technology for marine bacteria stain is the
prerequisite for making full use of marine microbial resources. To date,
most studies on microbial freeze-drying have focused on terrestrial
bacteria, such as Streptococcus [11], yeast [12] and Lactobacillus [13].
However, some important marine pathogenic bacteria, such as Vibrio,
exhibit low survival rate after lyophilization [14]. Because of the
disparities between marine and terrestrial environments, especially
osmolality and salinity, the factors that impact the freeze-drying
preservation of marine bacteria may be different.

P. nigrifaciens belonging to Pseudoalteromonas is widely distributed in
ocean [15,16]. It has multiple environmental adaptive capacities, and can
secrete various extracellular active substances [17] to ensure its survival
and play important roles in marine ecology system. Some strains are
conditional pathogens that can cause marine diseases of plants and
animals, such as sea tangle [18], sea cucumber [19], fish [20] and others.
However, some of them are used as potential probiotics in aquaculture
[21]. In the present study, we aimed to optimize protectant
composition, bacterial suspension and parameters of P. nigrifaciens in
freeze-drying process. Our findings provided a new choice for
lyophilization of marine bacteria.

2. Materials and methods

2.1. Bacterial strain

The strain of P. nigrifaciens used in this study was obtained from
Yellow Sea Fisheries Research Institute, China, which has been
reported as farmed Apostichopus japonicas pathogen [22]. After
cultivation in trypticase soy broth (TSB), the cells were harvested by
centrifugation and washed with 15 g/L NaCl solution twice.
Subsequently, the cell pellet was resuspended in 15 g/L NaCl solution
to obtain bacterial suspension of different concentrations.

2.2. Protectant screening and orthogonal test

Eight types of single protectants, including trehalose, mannitol,
lactose, fructose, glucose, skim milk, ascorbic acid and gelatin, were
screened in the first step. They have been reported as common
protectants for freeze-drying [13,23,24,25,26]. In this study, all the
protectants were dissolved in 15 g/L NaCl solution to set five gradient
concentrations ranging from 5% to 20% (Fig. 1). Ascorbic acid was
sterilized through a 0.22-μm filter membrane. Skim milk was sterilized
by boiling. Moreover, the other protectants were sterilized at 106°C for
30 min. Adjusted orthogonal combination test was performed for
selection of single protectants. Its array of L16 (44 × 22) was set to
analyze protectant composition (Table S1). Trehalose (0.0%, 5.0%, 7.5%
and 10.0%, w/v), mannitol (0.0%, 5.0%, 7.5% and 10.0%, w/v), lactose
(0.0%, 5.0%, 7.5% and 10.0%, w/v) and skim milk powder (0.0%, 5.0%,
10.0% and 15.0%, w/v) of different concentrations were prepared.
Protectant mixtures were sterilized at 106°C for 30 min first, and then
ascorbic acid (0.0% and 0.5%, w/v) and gelatin (0.0% and 0.5%, w/v)
were added as antioxidant and excipient, respectively.

2.3. Lyophilization and the protection effect

The selected protectants were dissolved in 5 g/L NaCl solution and
mixed with equal volume of P. nigrifaciens suspension (1.0
× 109 CFU/mL) in serum bottle. The eutectic point of the mixture was
determined by lyophilizer (Martin Christ LyoLog-32). Based on the
measured eutectic point, the freeze-drying process included the
following steps. Mixture (1 mL) was frozen at -80°C for 6 h, followed by
freeze-drying at -36°C, 0.200 mbar for 18 h and -42°C, 00.100 mbar for
2 h. Ice nucleation, in this situation, could be significantly reduced
during freeze-drying [11]. The serum bottles were capped in freeze
dryer chamber. Freeze-dried bacterial powder was activated after 24 h.
The powder was rehydrated with 1 mL sterile distilled water, and the
survival rate was determined by 10-fold gradient dilutions.
2.4. Salinity, initial cell concentration, and bacterial strain growth stage
optimization

Salinity of mixture, initial cell concentration and bacterial growth
stage of P. nigrifaciens suspension before freeze-drying were also
considered for optimization. The NaCl concentrations were set to 0, 5,
10, 15, 20 and 25 g/L. Different cell concentration gradients, including
5.0 × 109, 1.0 × 109, 5.0 × 108, 5.0 × 107 and 5.0 × 106 CFU/mL, were
prepared by diluting with 15 g/L NaCl solution. Five time points were
selected according the growth curve of P. nigrifaciens (Fig. S1),
including the 9th h (early stage of logarithmic growth phase), 12th h
(logarithmic growth phase), 16th h (the critical point of logarithmic
growth phase and stationary phase), 20th h (stationary phase) and
26th h (stationary phase). Rehydration was performed at 24 h after
freeze-drying was completed. Eight rehydration media, including
distilled water, sterile sea water, 0.5%, 1.0%, 1.5% (w/v) NaCl solution,
and 1.0%, 5.0%, 10.0% (w/v) skim milk, were prepared. Next, 1 mL
rehydration medium was added to the bacterial powder, and the cell
survival rate was then determined.
2.5. The freeze-drying of other marine bacteria

The other 18marine bacterial strains belonging to Pseudoalteromonas,
Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus,
Bacillus, and Saccharomyces were selected (Table S2) to evaluate the
protective effect of protectants in freeze-drying process. These strains
were isolated from mariculture animals or environment and preserved
in Yellow Sea Fisheries Research Institute, China. Cell suspensions of the
abovementioned strains (1.0 × 109 CFU/mL) were obtained by using
15 g/L NaCl solution. The suspensions were mixed with equal volume of
protectants and frozen at -80°C for 6 h, followed by freeze-drying
process as described above. Finally, the powder was rehydrated with
10% (w/v) skim milk, and the cell survival rate was determined.

Image of Fig. 1


Table 2
The mean and significant analysis of different protectants based on cell survival rate.

Level Mean and significant analysis

Lactose Mannitol Trehalose Skim milk Ascorbic acid Gelatin

1 13.990Ab 19.024Aab 17.551Aa 2.979Bc 21.781Aa 17.175Aa

2 19.332Aa 23.099Aa 20.051Aa 16.678ABb 15.171Ab 19.777Aa

3 21.250Aa 17.551Abc 19.092Aa 27.466Aa — —
4 19.332Aa 14.229Abc 17.209Aa 26.781Aa — —
5 0.494Aa 0.783Aa 0.090Aa 0.738Aa — —

Note: a,b Rowmean significant difference; for lactose, mannitol and trehalose, level 1 to 4
were corresponding to the concentrations of 0.0%, 5.0%, 7.5% and 10.0% (w/v),
respectively; for skim milk, they were 0.0%, 5.0%, 10.0% and 15.0% (w/v); for ascorbic
acid and gelatin, level 1 and 2 were 0.0% and 0.5% (w/v), respectively;—, no data.
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2.6. Statistical analysis

All statistical analyses were performed using SPSS v.19.0 software.
Data were presented as mean ± standard deviation (SD). A two-tailed
P value of less than 0.05 was considered as statistically significant.

3. Results and discussion

3.1. Single protectant screening

Fig. 1 shows the protective effects of eight single protectants at
different concentrations. No living bacteria were detected in the
presence of ascorbic acid and gelatin. Lower than 5% P. nigrifaciens
cells survived in the presence of glucose and fructose at different
concentrations. However, the cells survival rate was 28.53% in 10% (w/
v) skin milk and 26.95% in 20% (w/v) trehalose. Regarding the other
two protectants, the maximum survival rates were 17.05% in 15% (w/
v) lactose and 17.53% in 10% (w/v) mannitol. The results indicated
that skim milk and trehalose as single protectants had the best
protective effects on P. nigrifaciens.

Saccharides can help the cell to avoid enzyme leakage after the cell
wall is broken [23]. Because of different physical and chemical
characteristics, such as bonding ability and reducing activity, the
protective effect of monosaccharide (reducing sugar) is usually lower
than that of disaccharide. Previous studies have indicated that the
protective effect of nonreducing disaccharides is related to their
interactions with protein and membranes [24,25]. Skim milk exhibited a
better protective effect on P. nigrifaciens upon freeze-drying than other
single protectants. This finding might be attributed to its two major
components, protein and saccharides. Proteins can react with bacterial
structural protein and form a biofilm on the surface of bacteria. Ascorbic
acid alone or in combination with excipients can protect Lactobacillus
from freeze-drying and long-term preservation [13]. Because the limited
protective effect, gelatin is usually used as a better excipient [26].

3.2. Optimized protectant composition and its eutectic point

A total of 16 protectant mixture groups at various protectant
concentrations were investigated in the present study. Table S1 shows
that the survival rates of P. nigrifaciens were lower than 0.01% in
groups 1, 12 and 14. Meanwhile, the highest survival rate of 29.93%
was found in group 10. All groups showed a lower survival rate
compared with 10% (w/v) skim milk alone except for groups 6 and 10.
Variance analysis using SPSS v.19.0 indicated that skim milk, ascorbic
acid and mannitol had significant effects on the survival rate of P.
nigrifaciens (p b 0.05). Based on F value shown in Table 1, skim milk
had the highest impact, followed by ascorbic acid, mannitol, lactose,
gelatin and trehalose. Table 2 lists the survival rates in the presence of
different protectants at various concentrations. According to the
orthogonal analysis, the optimal protectant mixture consisted of 5.0%
(w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v) trehalose and 10.0%
(w/v) skim milk. Furthermore, 0.5% (w/v) ascorbic acid and 0.5% (w/
Table 1
Orthogonal variance analysis for different protectants based on the cell survival rate.

Type III sum of squares df MS F P

Corrected Model 2075.183 14 148.227 644.819 0.031
Intercept 5461.817 1 5461.817 23,760.021 0.004
Mannitol 162.254 3 54.085 235.279 0.048
Lactose 117.151 3 39.050 169.878 0.056
Trehalose 21.289 3 7.096 30.871 0.131
Skim milk 1572.645 3 524.215 2280.442 0.015
Ascorbic acid 174.747 1 174.747 760.184 0.023
Gelatin 27.097 1 27.097 117.878 0.058

Note: According to the P value and F value, skim milk shows significant difference and
highest impact of protective effect during freeze-drying.
v) gelatin were suggested to be added as antioxidant and excipient,
respectively. The eutectic point of this mixture was -25.8°C (Fig. S1).

Bacteria suffer from serious damage during the freeze-drying process.
Many studies have confirmed that the combinations of protectants can
improve cell survival rate after freeze-drying compared with single
protectants [11,27,28]. However, this finding may be species-dependent.
For example, in Pseudomonas chlororaphis, the cell survival rate using
protectant mixtures is lower than that obtained using disaccharides
(lactose, sucrose and trehalose) alone after freeze-drying process [29].

3.3. The effects of salinity, initial cell concentration, growth stage, and
rehydration medium

Fig. 2a shows that when 15 g/L NaCl solution was used for the
preparation of bacterial suspension, the maximum survival rate of P.
nigrifaciens was 40.3%. For the initial bacterial concentration, the cell
survival rate was increased up to maximum of 36.9% when the initial
cell concentration of bacterial suspension was 1.0 × 109 CFU/mL (Fig.
2b). Furthermore, with the increase in salinity or initial cell
concentration, the survival rate of P. nigrifaciens was gradually
decreased. Previous studies have reported that bacteria can sense
environmental changes, respond appropriately, and enhance their
tolerance to adverse environment [30,31]. Salinity is the key factor for
the maintenance of cellular osmotic pressure. It is essential to optimize
the protectant salinity to obtain high survival rate of marine bacteria
after freeze-drying process. The results confirmed that the survival rate
of P. nigrifaciens was decreased with the increase of salinity, which was
probably attributed to structural damage of cells or protein denature
caused by salt crystals.

Proper cell concentration can keep the best protectant distribution in
intercellular space and achieve the maximum protective effects during
freeze-drying process. The proportion of protectant and bacterial
suspension has strong effect on the protectant distribution around
bacterial cell, and affects the survival rate after freeze-drying [32].
Furthermore, appropriate initial cell concentration for freeze-drying may
vary due to different bacterial species. A previous study indicated that the
optimal initial cell concentration is between 1 × 109 to 1 × 1010 CFU/mL
for Pseudomonas chlororaphis [29], while it is 1–3 × 1010 CFU/mL for
Vibrio anguillarum [33]. We found that the cell survival rate was
increased up to maximum when the initial cell concentration of P.
nigrifaciens suspension was 1.0 × 109 CFU/mL, and the survival rate of P.
nigrifaciens was gradually decreased with the increase of initial cell
concentration.

Fig. S2 shows the growth curve of P. nigrifaciens. The highest cell
survival rate was 41.5% when the 22th-h cells were used to prepare
bacterial suspension. The lowest survival rate was found from cells in
the logarithmic phase (less than 30%) (Fig. 2c). As a result, stationary
phase cells were suggested to be optimal choice for P. nigrifaciens
during freeze-drying. The best rehydration effects were achieved
when 5–10% (w/v) skim milk was used as rehydration medium. Under
this condition, the survival rate of P. nigrifaciens was higher than
38.0%. Sterilized sea water showed the worst rehydration effect, with
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Fig. 2. The survival rates of P. nigrifaciens with different freeze-drying parameters. Error bars represent standard deviation (SD) from the mean of triplicate tests. (a): different NaCl
concentrations in protectant mixture; (b): different cell concentrations of initial bacterial suspension; (c): different growth times of bacteria; (d): different rehydration media.

4 Z. Zhang et al. / Electronic Journal of Biotechnology 44 (2020) 1–5
a cell survival rate of only 19.6% (Fig. 2d). Therefore, 5–10% (w/v) skim
milk was recommended as the best choice of rehydration medium.

The bacterial shape, adhesion ability, biochemical reaction or other
characteristics are affected by growth phase [34,35]. The prokaryotes in
the stationary phase can retain the highest survival rate after freeze-
drying [36]. In this study, P. nigrifaciens in the stationary phase also
exhibited the best protective effect, while the cells in the logarithmic
phase showed the lowest survival rate. This finding was potentially
attributed to the fact that the cells in the stationary phase had stabilized
morphological and physiological characteristics, while cells in the
logarithmic phase were growing fast and sensitive to adverse
environment. The last but not the least, appropriate rehydration
condition could repair some nonfatal injuries of cells during freeze-
drying. The same bacterial strains have different survival rates after
freeze-drying due to the difference in rehydration medium [37].
3.4. The protective effects of other marine bacteria

The survival rates of the other 18 marine bacteria ranged from 2.3%
to 95.1% after freeze-drying using the abovementioned protectant
mixture and parameters (Table S2). Bacillus, Saccharomyces, and
Candida achieved the maximum survival rates of about 90.0%. Vibrio
showed the lowest protective effects with an average survival rate of
less than 10%. The cell survival rates of Pseudoalteromonas,
Photobacterium, Planomicrobium, Edwardsiella, and Enterococcus
ranged from 34.3% to 68.4%. These results supported that the
protectant mixture and parameters optimized in this study would be
good choices for freeze-drying preservation of marine bacteria.
4. Conclusions

Our results support that marine bacteria can reach high cell survival
rate after freeze-drying treatment. In order to obtain the best protection
effect of lyophilization, appropriate protectant formula screening is
necessary. Some parameters such as salinity, initial cell concentration,
and strain growth stage must also be considered for optimization. In
this study, we suggested that the mixture of 5.0% (w/v) lactose, 5.0%
(w/v) mannitol, 5.0% (w/v) trehalose, 10.0% (w/v) skim milk, 0.5% (w/
v) ascorbic acid and 0.5% (w/v) gelatin was the optimal protectant
composition for P. nigrifaciens upon freeze-drying. The salinity and cell
concentration in protectant-bacterial suspension mixture should be
set as 10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore,
the cells in the stationary phase and 5–10% (w/v) skim milk were
recommended to prepare bacterial suspension and to rehydrate
freeze-dried powder, respectively.
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