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The buffering effect of acetate on hydrogen production during glucose fermentation by Ethanoligenens harbinense
B49 was investigated compared to phosphate, a widely used fermentative hydrogen production buffer. Specific
concentrations of sodium acetate or phosphate were added to batch cultures, and the effects on hydrogen
production were comparatively analyzed using a modified Gompertz model. Adding 50 mM acetate or
phosphate suppressed the hydrogen production peak and slightly extended the lag phase. However, the
overall hydrogen yields were 113.5 and 108.5 mmol/L, respectively, and the final pH was effectively controlled.
Acetate buffered against hydrogen production more effectively than did phosphate, promoting cell growth and
preventing decreased pH. At buffer concentrations 100–250 mM, the maximum hydrogen production was
barely suppressed, and the lag phase extended past 7 h. Therefore, although acetate inhibits hydrogen
production, using acetate as a buffer (like phosphate) effectively prevented pH drops and increased substrate
consumption, enhancing hydrogen production.
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1. Introduction

Research into alternative energy sources has attracted renewed
interest following an increased global awareness of accumulated CO2 in
the atmosphere and its role as a potential cause of climate change [1].
Hydrogen is an ideal clean and sustainable energy source that can be
used in fuel cells, transportation and other industries. Compared with
conventional hydrogen production processes, including the electrolysis
of water, the reforming of natural gas and oil and the gasification of
coal, biological hydrogen production offers a promising technique that
makes use of renewable biomass and organic wastewater.

Biohydrogen production can be divided into two main categories:
hydrogen production by photosynthetic organisms using light and
hydrogen production via fermentative metabolism by anaerobic
bacteria [2,3,4]. Relative to the photosynthetic production of hydrogen,
fermentative processes offer the advantages of higher hydrogen
production rates without illumination and the ability to convert
organic wastes into more valuable energy sources.

Many factors [5], such as the carbon source [6,7,8], nitrogen source
[9,10], hydrogen pressure [11,12,13], pH [14], temperature [15] and
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end-products [16], can influence fermentative hydrogen production.
Among these factors, pH is one of the factors controlling anaerobic
biological processes [17]. In an anaerobic reactor the pH value and its
stability are important. This pH value and stability are relevant to
different acid–base systems such as propionic, butyrate and mixed
fatty acid systems. The formation of hydrogen is accompanied with
volatile fatty acids (VFAs) or solvents during the anaerobic digestion
process. The accumulation of these acids causes a sharp decrease in the
culture pH and subsequently inhibits bacterial hydrogen production,
a failure to control pH changes due to volatile fatty acid (VFA)
imbalances can interrupt hydrogen production [17,18]. Buffers and
automatically controlled pH systems are two commonly used methods
for this purpose in anaerobic hydrogen production systems. Because of
their convenience and availability, carbonate and phosphate are two
important components in acid–base buffer systems and are widely
used in anaerobic hydrogen production systems [19]. Phosphate in
particular is regarded as an appropriate buffer, and its effects on
hydrogen production by Ethanoligenens harbinense B49 have already
been studied [20].

E. harbinense B49 was isolated from a continuous flow, high-rate
acidogenic reactor using ethanol-type fermentation, and it is a
Gram-positive, mesophilic, strictly anaerobic bacterium that is
phylogenetically related to the clostridia class. This bacterium is one of
the most promising producer organisms due to its capability to
Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND
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efficiently and rapidly generate hydrogen [11], and its characteristics
make it an interesting target for physiological and genetic studies
aiming to improve its metabolic properties and increase its productivity
with respect to hydrogen. This microorganism produces ethanol
as a major fermentation product, in addition to CO2, acetate and H2

[21,22,23]. The addition of ethanol had little inhibitory effect on
fermentative hydrogen production, and the addition of acetate had
a strong inhibitory effect on glucose consumption, bacterial growth
and hydrogen production of E. harbinese B49 [24]. The hydrogen
production is affected by the accumulation of self-produced
byproducts, and acetate is therefore regarded as having an inhibitory
rather than a buffering action during fermentative hydrogen
production by E. harbinense B49. The inhibitory effect of acetate has
been studied to understand the hydrogen-producing characteristics of
these cultures, but its buffering effect has not been explored. In this
paper, the effects of acetate on hydrogen production by E. harbinense
B49 were investigated to examine the buffering action of acetate on
this process.

2. Materials and methods

2.1. Microorganism and media

The hydrogen-producing strain E. harbinense B49 (AF481148 in
EMBL) was isolated from a continuous flow, high-rate acidogenic
reactor using ethanol-type fermentation and then identified as a novel
Ethanoligenens strain [24]. The strain was stored in our lab at −80°C
and cultured at 36°C at an initial pH of 6.5 under strict anaerobic
conditions. Cells from stock cultures were transferred into 50-mL
volumes of sterilised growth medium and incubated at 35°C. When
the cells entered a logarithmic growth phase, 5 mL of the pre-cultured
broth was inoculated into a 100-mL serum bottle containing 50 mL of
basal medium, and the culture was grown anaerobically at 35°C with
shaking at 130 rpm. The hydrogen production medium consisted of
(in g/L): glucose 10.0, yeast extract 3.0, NH4Cl 0.5, MgCl2 0.18, K2HPO4

1.5, NaH2PO4 4.2 and L-cysteine 0.5. The basal medium also contained
1% trace element solution, 1% vitamin solution and 0.2% resazurin. The
cells were harvested at the end of the exponential phase and used as
inocula for the batch experiments.

2.2. Batch tests

The buffering activities and inhibitory effects of phosphate, acetate
and ethanol on the hydrogen-producing performance of strain B49
were investigated using serum bottles as batch reactors. All of the
batch-fermentation studies were performed in 250-mL serum bottles
with a 120-mL working volume. The hydrogen production medium
also contained sodium acetate (NaAC·3H2O, at 0, 50, 100, 150, 200 or
250 mM) or phosphate (Na2HPO4 × 2H2O-KH2PO4, at 0, 50, 100, 150,
200 or 250 mM). Three bottles were tested in parallel for each
condition. All media were sterilised by autoclaving at 121°C and
15 psig for 30 min. Each bottle was then inoculated with 5.0 mL of
strain B49 cell suspension and incubated under non-controlled pH
Table 1
Glucose degradation, cell growth and terminal pH at various acetate or phosphate concentratio

Buffer con. (mM) Degradation rate (%) Biomass

Phosphate Acetate Phospha

0 97 ± 1.2 97 ± 1.2 619.32 ±
50 100 ± 1.4 100 ± 1.1 646.07 ±
100 95 ± 0.6 100 ± 0.6 616.87 ±
150 87 ± 1.1 100 ± 0.9 505.68 ±
200 63 ± 1.6 100 ± 1.4 455.19 ±
250 50 ± 0.5 98 ± 0.8 420.24 ±
conditions in an air-bath shaker at 36 ± 1°C and 135 rpm. The biogas
was sampled for biogas content analysis using a syringe, and a liquid
sample was simultaneously taken from the bottles. All tests were run
in triplicate.

2.3. Analytical methods

2.3.1. Cell growth analysis
The cell dry weight was determined by drying the cells for 24 h

at 80°C to a constant weight in a convection-type hot air oven
(HPG-9145, China).

2.3.2. Liquid samples
Cells in the liquid cultures were pelleted by centrifugation at

8000 rpm for 5 min at room temperature. The culture supernatant was
filtered through a 2.5-cm diameter, 0.45-μm polytetrafluoroethylene
filter, transferred to sterile 1-mL Eppendorf tubes and frozen until
analysis. Volatile fatty acids and ethanol were detected using a gas
chromatography (GC) system (HP 6890, Agilent Technologies, USA)
and a flame-ionisation detector (FID). The temperatures of the glass
columns and injections were 145°C and 175°C, respectively. The
carrier gas was N2, and the packing material was FON (which contains
polyethylene glycol and 2-nitroterephthalic acid), obtained from
Shimadzu, Inc. The glucose concentration in the culture was
determined according to the protocol in a kit (GOD-PAP, Shanghai
Rongsheng Biological Technology Corporation, China), and the pH was
measured using a pHS-25 acidity voltmeter according to standard
methods.

2.3.3. Biogas composition
Biogas production was measured using the water displacement

method. The biogas composition from the bioreactor was measured
using GC (HP 4890, Agilent) on an instrument equipped with a
thermal conductivity detector (TCD). A stainless steel column packed
with molecular sieve 5 A was used to detect H2. Nitrogen was used as
the carrier gas at a rate of 25 mL/min.

3. Modeling the kinetic parameters

The cumulative hydrogen production data were fitted using a
modified Gompertz equation [25,26] as a suitable model for describing
the progress of cumulative hydrogenproduction in the batch experiment.

H ¼ P � exp − exp
Rm
P

λ−tð Þ þ 1
� �� �

½Equation 1�

in which H is the cumulative hydrogen production (in mL/L); P is the
hydrogen production potential (in mL/L); Rm is the maximum hydrogen
production rate (as mL/L/h); λ is the time of the lag phase (h); e is
2.7182; and t is the incubation time (h).
ns.

(mg/L) Terminal pH

te Acetate Phosphate Acetate

61.9 623 ± 61.5 3.75 ± 0.03 3.75 ± 0.03
58.3 916 ± 75.4 4.15 ± 0.03 4.73 ± 0.03
46.5 1044 ± 71.4 4.60 ± 0.03 5.07 ± 0.03
56.4 1138 ± 61.2 5.35 ± 0.03 5.22 ± 0.03
50.3 1166 ± 80.3 6.05 ± 0.03 5.33 ± 0.03
44.9 1213 ± 90.1 6.20 ± 0.03 5.41 ± 0.03
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Fig. 1. Time course of hydrogen production profiles during fermentation of glucose under
different phosphate concentration conditions. The lines represent data calculated using
Gompertz equation.
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4. Results and discussion

4.1. Glucose degradation and cell growth

The glucose degradation efficiencies, cell growth and terminal pH
values at various phosphate and acetate concentrations are illustrated
in Table 1. In the tests of acetate, the glucose was almost completely
degraded at the end of fermentation, achieving 97–100% total glucose
degradation. In contrast to acetate, the addition of phosphate had an
obvious inhibitory effect on glucose degradation. From 0 to 50 mM
phosphate, the glucose degradation reached approximately 97–100%.
When more phosphate was added beyond 100 mM, the glucose
degradation rates declined, achieving only 50% glucose degradation at
250 mM. This result indicates that the addition of excess phosphate
had a significant negative influence on glucose degradation.

In the phosphate tests, cell growth was improved with 50 mM
phosphate. However, as the phosphate concentration increased, cell
growth was gradually inhibited. In contrast, the total cell weight
increased as more acetate was added. This result was inconsistent
with that of another research report, a discrepancy that may be due to
differences in the composition of the hydrogen production medium
[24]. The initial pH in all tests was approximately 6.5. As shown in
Table 1, at the end of hydrogen-producing fermentation, the terminal
pH values of media supplemented with 50 mM or 100 mM phosphate
were much higher than those of acetate-supplemented media.
However, when the concentrations of phosphate and acetate exceeded
150 mM, the terminal pH values of the acetate-supplemented media
were much higher than those supplemented with phosphate, due
to the buffer system of sodium acetate and acetate. These results
indicated that acetate was able to promote the cell growth of
E. harbinense B49 and raise the terminal pH as a result of its enhanced
buffering of the fermentative system. In contrast, although phosphate
Table 2
Fermentation characteristics for hydrogen production at various phosphate or acetate concent

Buffer con. (mM) Pmax (mmol/L) Rmax (mmol/L/h)

Phosphate Acetate Phosphate A

0 108.14 108.14 12.84 1
50 108.54 113.53 13.96 1
100 102.69 106.52 18.39 6
150 105.86 103.84 9.69 6
200 84.34 104.02 7.74 6
250 18.01 100.22 2.96 7
was able to raise the terminal pH by buffering Na2HPO4·2H2O-KH2PO4,
it also restrained cell growth.
4.2. Time course of hydrogen production profiles

4.2.1. Under different phosphate concentration conditions
Hydrogen production by E. harbinense B49 was significantly affected

by the phosphate concentration of the medium. As shown in Fig. 1 and
Table 2, a slight increase in the cumulative hydrogen yield could
be achieved by increasing the phosphate buffer concentration from
0 mM to 50 mM. A maximum Pmax of 108.54 mmol/L and Rmax of
18.39 mmol/L/h were observed at phosphate buffer concentrations
of 50 mM and 100 mM, respectively. Subsequently, Pmax and Rmax

decreased gradually as the phosphate buffer concentration increased,
most likely due to the negative effect of increased cytoplasmic osmotic
pressure [27].

The lag phase times of hydrogen production became longer as the
phosphate concentration increased. The final pH also increased with
increasing phosphate buffer concentrations, whereas lower phosphate
buffer concentrations were associated with lower pH values. Similar to
glucose consumption and cell growth, hydrogen production also
peaked at 50 mM phosphate, as shown in Table 1 and Table 2.

Different results were obtained in previous studies of Citrobacter sp.
Y19 [28] and Rhodopseudomonas palustris P4 [29]. No inhibitory effect
of phosphate on cell growth was observed at concentrations between
0 and 300 mM. The maximum hydrogen yield was obtained at
concentrations of 50 and 140 mM phosphate by R. palustris P4 and
Citrobacter sp. Y19, respectively. The present results indicate that the
optimal phosphate concentration is 50 mM for E. harbinense B49. At
this concentration, the maximal yield of hydrogen was produced; the
most glucose was exhausted; and the lag phase was relatively shorter.
Similar results were reported for Clostridium beijerinckii Fanp3 [30].
4.2.2. Under different acetate concentration conditions
The effects of acetate concentration on hydrogen production are

shown in Fig. 2 and Table 2. The glucose in the media was completely
exhausted after 48 h of incubation irrespective of the acetate
concentration.

However, the addition of acetate had a considerable impact on
the cumulative hydrogen production. Compared with hydrogen
production medium that did not include acetate, an increase in the
cumulative hydrogen yield could be achieved by increasing the
acetate buffer concentration to 50 mM, and the addition of additional
acetate extended the lag phase of hydrogen production. The
maximum Pmax of 113.53 mmol/L and Rmax of 12.56 mmol/L/h
occurred at an acetate buffer concentration of 50 mM and in media
with no acetate added, respectively. When the concentration of
acetate was greater than 50 mM, slight inhibition of hydrogen
production occurred, and the Pmax and Rmax values decreased
gradually with increasing acetate concentration. However, cell growth
was inversely related to the hydrogen production rate and increased
with increasing acetate, as shown in Table 1.
rations.

λ (h) R2

cetate Phosphate Acetate Phosphate Acetate

2.56 4.2 4.2 0.9986 0.9986
0.53 4.4 6.8 0.9979 0.9905
.19 7.0 8.8 0.9984 0.9932
.30 7.9 11.4 0.9955 0.9988
.16 10.5 11.6 0.9959 0.9971
.45 14.2 13.4 0.9944 0.9941
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Fig. 2. Time course of hydrogen production profiles during fermentation of glucose under
different acetate concentration conditions. The lines represent data calculated using
Gompertz equation.
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4.3. The amount of volatile organic compound and hydrogen

The amount of acetate, ethanol and hydrogen at various phosphate
and acetate concentrations are shown in Fig. 3. The amount of ethanol
were increased slightly with increasing phosphate or acetate
concentration, the concentration of acetate and the volume of
hydrogen were varied only slightly while the concentration of acetate
was increased, but decreased dramatically while the concentration of
phosphate was increased. In contrast to acetate, the addition of
phosphate had an obvious inhibitory effect on acetate and hydrogen
production. At 250 mM acetate, the volume of hydrogen exceeded
100 mMwhich achieved the maximum volume of hydrogen at 50 mM
acetate. However, at 250 mM phosphate, the volume of hydrogen
was less than 20 mM which is one fifth of the maximum volume of
hydrogen at phosphate. This result indicates that the addition of
excess phosphate had a significant negative influence on hydrogen
production.

Hydrogen production from glucose by hydrogen-producing
microorganisms also yields volatile organic acids, such as acetic acid
and butyric acid, which lower the pH of the media and slow hydrogen
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Fig. 3. The change of acetate, ethanol and hydrogen yield under different phosphate or
acetate concentration conditions (P and A represented phosphate and acetate buffer,
respectively. The yield of acetate subtracted the concentration of acetate-supplemented
in the media under different acetate concentration conditions).
production [31]. To minimise the effects of these organic acids on the
pH, phosphate buffers composed of Na2HPO4 and NaH2PO4 or KH2PO4

were used to control the pH. Acetic acid is mainly a product of
fermentation; therefore, acetate has been regarded as an inhibitor of
hydrogen production and has not been used to control pH. However,
the present results indicate that acetate was able to control the pH
during fermentative hydrogen production from glucose by E. harbinense
B49. We also evaluated the ability of phosphate and acetate to control
pH during fermentation, and we found that although both phosphate
and acetate were able to control the pH through their buffering activity,
acetate was a stronger buffer than phosphate until the concentrations
exceeded 150 mM. The final pH increased with increasing
concentrations of acetate and phosphate, but their patterns of buffer
activity may be different. Sodium acetate and acetate, which were
produced during fermentative hydrogen production, formed a buffer
that grew increasingly strong. Acetate was “internal buffer system”,
while phosphate was “external buffer system”.

5. Conclusions

The addition of acetate had both inhibitory and buffering effects
on hydrogen production from glucose by E. harbinense B49. Acetate
was able to control the pH changes caused by fermentative hydrogen
production and increased the yield of hydrogen. At an acetate
concentration of 50 mM, maximal hydrogen production of
113.5 mmol/L was achieved. The inhibitory effect of acetate on
hydrogen production was mainly due to an extended lag phase, and
acetate slightly decreased the cumulative hydrogen volume when
added at concentrations between 100 and 250 mM. Therefore, using
acetate as a buffering supplement can control the pH and alleviate the
acidification of the growth medium.
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