
Electronic Journal of Biotechnology 23 (2016) 69–78

Contents lists available at ScienceDirect

Electronic Journal of Biotechnology
Review
Uniparental genetic systems: a male and a female perspective in the
domestic cattle origin and evolution
Piera Di Lorenzo a,1, Hovirag Lancioni b,1, Simone Ceccobelli a,1, Ludovica Curcio c,
Francesco Panella a, Emiliano Lasagna a,⁎
a Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
b Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, 06123, Italy
c Area Ricerca e Sviluppo, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, 06126 Perugia, Italy
⁎ Corresponding author.
E-mail address: emiliano.lasagna@unipg.it (E. Lasagna

1 These authors contributed equally to this work.
Peer review under responsibility of Pontificia Univers

http://dx.doi.org/10.1016/j.ejbt.2016.07.001
0717-3458/© 2016 Pontificia Universidad Católica de Valp
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 March 2016
Accepted 29 June 2016
Available online 4 August 2016
Over the last 20 years, the two uniparentally inherited marker systems, namely mitochondrial DNA and Y
chromosome have been widely employed to solve questions about origin and prehistorical range expansions,
demographic processes, both in humans and domestic animals. The mtDNA and the Y chromosome, with their
unique patterns of inheritance, continue to be extremely important source of information. These markers
played significant roles in farm animals in the evaluation of the genetic variation within- and among-breed
strains and lines and have widely applied in the fields of linkage mapping, paternity tests, prediction of
breeding values in genome-assisted selection, analysis of genetic diversity within breeds detection of
population admixture, assessment of inbreeding and relationships between breeds, and assignment
of individuals to their breed of origin. This approach offers a unique opportunity to save genetic
resources and achieving improved productivity. In the past years, significant progress was achieved in
reconstructing detailed cattle phylogenies; many studies indicated multiple parental sources and
several levels of phylogeographic structuring. More detailed researches are still in progress in order to
provide a more comprehensive picture of such extant variability. This paper is focused on reviewing the
use of the two uniparental markers as valuable tool for the characterization of cattle genetic diversity.
Furthermore, their implications in animal breeding, management and genetic resources conservation
are also reported.
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1. Uniparental molecular markers

Ove the last 20 years, the two uniparentally inherited marker
systems, namely mitochondrial DNA (mtDNA) and the Y chromosome
have been widely employed to solve questions about origin and
prehistorical range expansions, demographic processes, both in
humans [1] and domestic animals [2,3,4,5,6]. Even if whole genomic
approaches are now opening up new clues on the livestock complexity
and admixture, mtDNA and the Y chromosome, continue to be an
extremely important source of information because of their unique
pattern of inheritance [7,8,9,10]. As they are uniparentally inherited,
they evolve exclusively through the sequential accumulation of
mutations along the maternal and paternal lineages, respectively; these
markers played significant roles in farm animals, namely in the
evaluation of the genetic variation within- and among-breed lineages,
moreover have been widely applied in the fields of linkage mapping,
paternity tests, prediction of breeding values, genome-assisted
selection, analysis of genetic diversity within breeds, detection of
population admixture, assessment of inbreeding, relationships between
breeds, and assignment of individuals to their breed of origin [11]. This
approach often provides not only new insights into the timing and
location of domestication events that produced the extant farm
animals [12,13], but also even offers a unique opportunity to conserve
genetic resources, promote and defend local products [14,15]. In
this last case the genetic traceability of livestock products is an
essential tool to safeguard public and animal health, and to valorize
typical foods [16]. The past few years have seen significant progress
in reconstructing detailed livestock phylogenies especially in cattle
(here reviewed), dog [17,18], pig [19,20], horse [21,22,23], sheep [24,
25], goat [26,27,28,29] and chicken [30,31] deepening genealogical
branching of the tree topologies for both mtDNA and Y chromosome.
These studies indicated multiple parental sources and several levels of
phylogeographic structuring.

This paper is focused on reviewing the use of the two uniparental
markers as valuable tool for the characterization of cattle genetic
diversity. Implications in animal breeding, management and
conservation of genetic resources are also reported.

2. Mitochondrial DNA

Mitochondrial DNA is the best studied among all available genetic
markers systems. There are several reasons for this peculiarity:

1) its exclusively maternal inheritance makes possible to retrace the
genetic history of the female lines.

2) its elevated variability in natural populations due to the high
mutation rate, estimated to be at least five times higher than that
observed in nuclear DNA, can generate signals about population
history over short time frames.

3) mtDNA may be analyzed in both male and female donors, this
facilitates the collection of representative samples.

4) the small size of the molecule allows easy amplification and
sequencing because of the multiple copies in the cells, moreover
the mitochondrial genes are strongly conserved across animals,
very few are the duplications, no introns, and very short are the
intergenic regions.

Rapidly, the analysis of mtDNA has revealed to be the most
convenient and cheapest molecular tool to explore the genetic
variability of a species, and became the backbone of molecular genetic
investigations in livestock: genetic structure and segregation pattern
are still now used to tracing back the origins of breeds as well as to
identifying individuals.

The mtDNA has been extensively used as a tool for inferring
the evolutionary and demographic past of livestock populations
defining their ancestral species and contributing to evidence for the
localization of domestication sites [13,22,32,33,34,35,36,37]. Moreover
it has been proven to be highly informative to determine the level of
their genetic variability, which is essential in defining conservation
priorities for regional breed's specific programs [25,38].

In livestock mtDNA has been used to describe variation in putative
wild ancestor populations and modern domestic populations. By
now, complete mitogenome sequences are routinely used to produce
phylogenetic trees, more and more informative. Although human
detailed phylogeny is still too far to be reached, livestock mtDNA
surveys led to unravel new genetic flow patterns and phylogeographic
structures such as in cattle [39,40,41,42,43], dogs [35], horses [22],
pigs [44] and chicken [45].

3. Y chromosome

As a consequence of its uniparental transmission and lack of
recombination, the DNA sequence of every Y chromosome preserves
a unique record of mutational events that occurred in the genome
of previous (male) generations. Studies of polymorphisms in the
non-recombining portion of the Y chromosome represent an easy
and rapid way to detect and quantify male-mediated admixture,
and have been proposed for detecting male-mediated migration
events, reconstructing paternal history and trace individual founder
lines or families [46,47,48,49]. The absence of interchromosomal
recombination out of the pseudoautosomal region (PAR) preserves
original arrangements of mutational events, and thus male lineages can
be traced both within and among populations. Effective population size
is often reduced further by the relatively high variability of male
reproductive success. As a result, the Y chromosome is a sensitive
indicator of recent demographic events, such as population bottlenecks,
founder effects and population expansions [50]. In several species,
males are more mobile than females and compete for reproduction or,
in livestock case, are selected on the basis of breeding objectives.
Therefore, while mtDNA variants stay mostly within the herd,
Y-chromosomal variants may reflect the origin of sires as influenced by
introgression and upgrading. It has been shown that domestic cattle
can display marked sex-biased admixture and migration patterns, for
example, the zebu genome spread across Africa through male-mediated
gene flow [51,52,53,54,55]. This produced different distributions of the
maternal mtDNA and paternal Y chromosome, with the autosomal
genome representing an independent picture from two uniparental
extremes.

Interestingly, while recent developments in cytogenetic technologies
should facilitate the isolation of Y-chromosomal specific markers [56],
for most livestock species there are still few Y polymorphic sites. This is
probably a consequence of the demographic history of domestication
and breed formation. In polygynous species, like most livestock, we
expect indeed that a small number of male lineages would have
contributed to the genetic pool of the species. Beside dog and cats,
polymorphic Y microsatellite markers are currently available only for
cattle [53,57,58,59,60], yak [61,62], buffalo [63,64,65] and partially for
horse [66]. At the present time these markers have not been yet
isolated in some major livestock species, e.g. small ruminants, camelids
or the domestic pig.

In the study of human male lineages, the use of Y-specific
microsatellites has allowed for refined analyses of the genetic diversity
of paternal lineages that can be found within major haplogroups [67,
68,69,70,71]. Similarly, in cattle, microsatellite analysis has identified
several Y-haplotypes in Portuguese [72], northern and eastern
European [73], western-continental, British and Sub-Saharan African
[74] breeds, as well as in American Creole [75] breeds. Even though
different set of markers were used in these studies, and each only
partially covered the diversity pattern of the paternal lineages, they
confirmed that Y-markers exhibit a strong phylogeographic structure
in cattle. Although Y-chromosome diversity is lower than autosomal, it
has been shown that the studies of male lineages added much to what
can be inferred only from mtDNA and autosomal variation [6,72,76,77,
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78,79,80,81]. Moreover, compared with mtDNA, the small number of
males used for breeding and male-mediated crossbreeding has
accelerated the loss of Y-chromosomal variation in domestic cattle. For
example, several cattle (such as Russian, Ukrainian and Scandinavian)
have been influenced by gene flow from commercial cattle breeds
leading to the genetic dilution of many worldwide local breeds [73].

4. Genetic resources in domestic cattle

Cattle breeds are recognized as an important part of biodiversity and
genetic heritage. According to FAO [82], out of the 1350 cattle breeds
worldwide, 14.8% are extinct [83]. Therefore, it is very important to
preserve the genetic diversity of the remaining breeds, mostly captured
in non-selected autochthonous breeds [84]. This decrease in the
number of cattle breeds has several reasons, such as modernization and
reorientation of the agricultural production, socio-economic changes
and cultural developments. Between the 1950’s and 1980’s, the
willingness to increase productivity, intensification and specialization
of animal production has dramatically affected the local cattle breeds
and resulted in loss of sequence variation in DNA and breeds diversity
[85,86]. However, in the last two decades the interest for preserving
the locally adapted breeds has considerably increased and several
conservation strategies were implemented in Europe and worldwide.

The development of the cattle genetic resources has been always
more a multifaceted and continuously dynamic process, both on the
global and local level, strictly tied to human history. It has resulted in
a worldwide population of cattle with a considerable phenotypic and
molecular diversity. Felius et al. [87] surveyed the complex history of
cattle genetic resources throughout the time on different continents,
and argued that the current genetic diversity of cattle emerged during
three main and overlapping phases: i) domestication and subsequent
wild introgression; ii) natural adaptation to a diverse agricultural
habitat; and iii) breed development.

5. The cattle domestication

Domestic cattle are classified into two major species, the taurine or
humpless cattle (Bos taurus) and the zebu or humped cattle (Bos
indicus). Both descend from the wild aurochs (Bos primigenius). More
precisely, the subspecies B. p. primigenius in Southwest Asia and B. p.
namadicus in India were the ancestors of taurine and zebu cattle,
respectively.

In his record of the GallicWars, Julius Caesarwrote about aurochsen:
“They are a little below the elephant in size, and of the appearance,
color, and shape of a bull. Their strength and speed are extraordinary,
they spare neither man nor wild beast which they have espied”. At the
end of the last glacial period (12,000 years ago) B. primigenius was
endemic over almost the whole Eurasian continent and Northern
Africa. By the 13th century A.D., aurochsen were extremely rare and
restricted to Eastern Europe, with the last recorded aurochs dying in
Poland in 1627 [40]. Only few contemporary pictures of aurochs exist,
but skeletal remains allow reconstructing its morphology. The size,
shape or gender ratios allow a differentiation of fossil remains from
wild and domestic cattle [34].

Cattle domestication represents a major development in the
Neolithic transition and was an important step in human history,
leading to extensive modifications of the diet, the behavior, and the
socioeconomic structure of many populations [88] of the Old World
that at different times adopted cattle breeding [89,90]. Archaeological
evidences suggest that taurine cattle have been domesticated between
10,300–10,800 years ago in the Fertile Crescent, most probably on the
western Turkish-Syrian border [91,92]. In addition, isotope analysis of
organic material revealed traces of milk in excavated pottery,
indicating the storage of dairy products already 9 kiloyears (ky) ago [93].

A comparison of themtDNAof taurine and indicine cattle represented
one of the first contributions of DNA research to a reconstruction of the
cattle domestication [94]. The divergence of their control regions
implied separate domestications, which most likely started 10 ky ago in
South-western Asia and the Indus valley respectively [34,95]. The most
recent molecular estimates of the divergence time of these aurochs
subspecies and thus of taurine and zebu cattle are 147 ky ago [96] or
335 ky ago [40], and 350 ky ago [97]. Although these estimates have
large confidence intervals, all indicate that taurine and zebu cattle have
been domesticated separately. This was followed by the spread of
domesticated herds throughout the Old World accompanying human
trade and migration. After domestication, survival and diffusion of
B. taurus was completely dependent on humans; thus the
phylogeographic patterns of cattle genetic diversity should mirror
human activities or movements and may provide information
complementary to archaeological and anthropological data [98]. When
domesticated herds diffused from the Fertile Crescent into Europe,
Africa and the rest of Asia, local B. primigenius populations were
numerous and widespread. Moreover, the coexistence of
autochthonous wild aurochs and the newly introduced cattle lasted for
thousands of years in many geographical areas, thus providing potential
conditions not only for spontaneous interbreeding between wild
animals and domestic herds, but also for pastoralists to create
secondary centers of domestication involving local aurochs populations.
In contrast to the wide distribution of the aurochs domestication events
took place in certain areas, reflecting the difficulty of sustained
managing and breeding of these large wild animals [99]. The most
plausible scenario is a single and regionally restricted domestication
process of cattle in the Near East with subsequent migration into
Europe during the Neolithic transition without significant maternal
interbreeding with the endogenous wild stock [100].

A recent coalescent-based analysis using ancient Iranian taurine
samples suggested a severe Near Eastern domestication bottleneck,
with an estimated effective size of just 80 female founders [99]. Scheu
and colleagues' model suggests that a high proportion (73%) of
domesticated cattle in Anatolia and the Near East may have migrated
into Europe. This indicates that the expansion into Europe was a far
less severe bottleneck than assumed before, and that much of the
variation present in the original Anatolian/Near Eastern population
survived in initial European cattle populations [100]. While genetic
studies support a Near Eastern origin for European B. taurus
cattle, there is considerable debate regarding the extent of genetic
exchange between early domestic cattle and indigenous aurochs
during the development of animal herding in Europe. Comprehensive
data sets of ancient and modern cattle DNA from other areas reveal a
more complex scenario: fossil remains [101], together with the
predominance of one taurine mitochondrial haplogroup T1 in Africa
[42,102] and a new haplogroup in Eastern Asia, T4, [73,103] suggested
at least two other domestication centers.

The identification of sequences of putative aurochs haplogroups Q
and R in modern Italian cattle does support the limited local adoption
of wild aurochs matrilines in Southern Europe [39,40,104].

In contrast to mtDNA studies, analyses of paternally inherited Y
chromosome haplotypes remain equivocal as to whether local wild
male aurochs contributed to European B. tauruspopulations [79,105,106].

The interface between early European domestic populations
and wild aurochs was significantly more complex than previously
thought and important questions remain unanswered, including the
phylogenetic status of aurochs, whether gene flow from aurochs into
early domestic populations occurred [107].

However, independent domestication in Africa [52,54] and East Asia
[103] has also been postulated and ancient DNA data raise the
possibility of local introgression from wild aurochs. Zebus were
probably imported into Africa after the Arabian invasions in the 7th
century [52]. Interestingly, the discovery that African zebus carry
taurine mtDNA implies that African zebus were the result of crossing
zebu bulls with taurine cows [52]. The first auroch mtDNA sequences,
collected in Great Britain, typed far from those of modern cattle
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breeds, suggesting little auroch introgression [102]. Later, however,
more ancient auroch sequences from Italy and from the Bronze Age of
the Iberian Peninsula revealed haplotype distributions similar to those
of modern European cattle breeds [78,88]. Only one Iberian sample
appeared more closely related to the British auroch sequences [78].
Thus, the introgression of auroch mtDNA into modern cattle breeds
has taken place, but it is not clear to what degree or whether this
varied depending upon geographical location. Thus, detailed and
continent-wide evaluation of the early spatiotemporal demography of
B. taurus has so far been hindered by the lack of data from the key
bridging areas of the Neolithic, namely Anatolia, the Balkans, and the
Western Mediterranean.

6. Use of uniparental markers in domestic cattle

6.1. The female perspective of the mitochondrial DNA

From a genetic point of view, animal domestication can be
reconstructed through phylogeographic analyses of both nuclear and
mitochondrial genomic data [13]. Early molecular and evolutionary
studies on cattle have focused on mtDNA, in particular on short
segments of its control region [94,102,103]. However, mtDNA
control-region variation is often characterized by high levels of
recurrent mutations and reversions, thus blurring the structure of the
phylogenetic tree and making the distinction between some
important branches within the tree virtually impossible. In fact,
following the most detailed approach used for the human phylogeny
[108,109,110,111], researches tend to use complete mitogenomes to
reconstruct the history of animal domestication such as in cattle [40,
41,42,104], chicken [45], horse [21,22] and sheep [25].

The analysis of mtDNA sequence diversity has provided useful
information on the origin and diversification of current cattle
populations [102,105,112]. The mitochondrial signals of wild aurochs'
domestication can be seen in modern cattle breeds [102,112,113]. In
particular cattle domestication in the Near East is thought to have taken
place around 10,500 years ago, giving rise to taurine cattle (mainly
mitochondrial haplogroup T), whereas domestication in southern Asia
has been dated later to about 8500 years ago resulting in modern zebu
(indicine) cattle (mitochondrial haplogroup I). Molecular diversity
approach revealed that modern taurine mitochondrial genomes cluster
within a number of closely related branches, termed T, T1, T2, T3, and
T4, geographically well structured: T1 predominantly found in Africa;
T2 originates in the Near East and Western Asia; and T3 found in
Europe and originates from the expansion of a small cattle population
domesticated in the Middle East.

Frequency and geographic distributions of the T lineages were
very compatible with the scenario of a single ancestral Near Eastern
population source and a later spread out following the domestication
event. However alternative models were proposed to explain some
peculiar features in the geographic distributions of T1 [114], T3 [88]
and T4 [103].

Lenstra and colleagues [8] combined the results of several regional
studies of the cattle mtDNA control region resulting in a global
meta-analysis suggesting strong founder effects during colonization of
Europe, East Asia, Africa and America, but little temporal variation.

The most recent whole mitogenome sequencing approach has
revealed the fine phylogenetic structure of what is now termed
“macro-haplogroup T” (Table 1). This is dissected in two clades, T1′2′3
and T5 [40,41]. The latter was a previously unknown haplogroup,
reported only in Italy [104] and Croatia [83], while T1′2′3 is formed by
the previously defined T1, T2 and T3. Haplogroup T4 turned out to be
a derived sub-clade within T3 [41,42], probably spread over East Asia
by a founder effect during the eastward migration of cattle.

The age estimates of super-haplogroup T (~16 ky), and those of T1,
T2, T3 and T5 haplogroups were all compatible with the scenario that
their founding haplotypes were present and directly involved in the
domestication event that occurred 10–11 ky ago in the Near East. The
exception was T4 whose younger age is suggestive of an origin within
domestic cattle, probably while diffusing from the Near East towards
Eastern Asia [39,40,42]. Haplogroup T4 was not observed in the
west, but has been found in East-Chinese ancient DNA dating to
4500 years ago [115], in modern Korean beef cattle [39] and in more
than half of the Japanese cattle [103]. The high T4 frequency (21%) in
the Yakutian cattle and control-region haplotypes shared with
European samples, suggested that the Yakutian cattle have prehistoric
maternal ancestries in domesticated Near Eastern cattle indicating a
link between the Yakut and cattle from East-China [73].

Complete mtDNA sequences have allowed not only an accurate
phylogeny, but even strengthened a Southwest-Asian origin for all
major T haplogroups, including the African T1 and East-Asian T4 [41,
116].

A recent comprehensive phylogenetic analysis of 64 T1mitochondrial
complete genomes identified eight haplotypes as founders of the African
T1 population [41].

Estimates of coalescence times for the T1 sub-haplogroups (6200
to 12,900 years ago) and their current geographic distributions
are compatible with a Southwest-Asian origin for most T1
sub-haplogroups, which for sub-haplogroup T1c1 has been confirmed
by it discovery in Iraq. Sporadic in the Old World it reaches 31% of
frequencies of in the Caribbean Lesser Antilles islands and even 50% in
Brazilian Criollo cattle. Data also suggest that one sub-haplogroup,
T1d, might represent a mitochondrial line that has developed in the
African continent shortly after the domestication event in the Near
East, while T1c1a1, found for the first time in an African breed, it
probably originated in North Africa, reached the Iberian Peninsula and
sailed to America, with the first European settlers [41]. Ancient gene
flow across the Gibraltar Strait has been recently confirmed also by
SNP genotyping [117]. Recent data from ancient Neolithic/Chalcolithic
Iberian cattle population have pointed out that T1 haplogroup already
exists simultaneously in South-Western Europe [118]. Up to date
there are no data for the presence of T1 haplogroup in ancient
South-Eastern Europe.

The frequency of the T3 haplogroup increases from ~40% in
South-West Asia to almost 100% in North-West Europe, with a
concomitant decrease of T2. The latter has appreciable frequencies in
Italian, Balkan and Asian taurine cattle, but is found only sporadically
in the remaining European regions, Northern Africa and in bones from
France dating to 5000 years ago [113] and in Switzerland derived from
the Roman period [119].

Data available from ancient DNA confirmed that most Neolithic
European cattle already carried T3 haplotypes [120,121]. This is in
accordance with Bayesian analysis of taurine mtDNA variants
coalescence, showing population expansion during the last 10 ky
[122]. Even if T3 haplogroup is dominant in Europe and North-Central
Asia [40,41,73,75,88,102,123,124], two interesting exceptions in
Europe are remarkable:

i) four ancient breeds from Tuscany have almost the same
mtDNA diversity as found in Southwestern Asia, suggesting an
ancient maternal origin and a direct link between Tuscan and
Western-Asian cattle [125]. For the Chianina breed this was
confirmed by microsatellite data [126]. Microsatellites also indicated
that the Maremmana and the Cabannina, the two other Tuscan
breeds, have been subject to Podolian and Brown Mountain breed
introgression respectively.

ii) the appreciable frequencies of T1 haplogroup in several Spanish and
Portuguese breeds, indicated migration from Africa to the north. This
may have occurred either during the Neolithic spread of cattle or
later, for instance during the Islamic occupation. Importation of
Iberian cattle into the newly discovered American continent explains
the relatively high frequency of the T1 haplogroup in Caribbean and
South American cattle [75,127,128,129,130,131].



Table 1
Sources and haplogroup affiliation for the Bos taurus complete mtDNA sequences.

Macroarea and breeds T1′2′3 T1 T2 T3⁎ T3a T3b T3c T3d T4 T5 I P Q R Total References and GenBank accessions

America 5 5
Creole 5 5 [41]
Eastern Asia 2 13 2 4 6 3 30
Hanwoo 1 1 2 [147]; HQ025805
Japanese Black 4 3 7 AB074962-AB074968
Korean 1 12 2 3 18 AY526085; DQ124371-DQ124386;

NC006853
Mongolian 1 1 [40]
Nandan 1 1 KT033901
Unknown 1 1 KP143771
Iran and Iraq 1 5 5 2 3 16
Iranian 4 2 1 7 [39]
Iraqi 1 1 3 2 2 9 [39]
Greece 2 2
Greek 2 2 [39]
Northern Europe 2 1 24 2 20 2 2 1 1 55
Angus 1 7 7 1 16 [148]; AY676857; AY676859;

AY676862-AY676873
Charolaise 1 1 2 AY676858; AY676861
Fleckvieh 1 1 [149]
Galbvieh 1 1 AY676860
Heck cattle 1 1 HM045018
Holstein-Friesian 7 2 5 1 1 16 DQ124403-DQ124418
Hungarian Grey 1 1 GQ129207
Limousine 1 1 2 [41]; AY676856
Longhorn 1 1 [148]
Red Mountain 2 3 1 6 [150]
Simmental 1 1 AY676855
Ukrainian grey 1 1 GQ129208
White Park 3 1 2 6 [151]
Iberian Peninsula 2 2 4
Alentejana 2 2 [41]
Betizuak 2 2 [39]
Italy 1 35 6 12 1 6 2 16 10 89
Agerolese 3 1 4 [40,41]
Bruna 1 1 [41]
Cabannina 1 2 3 6 [39,104]
Calvana 1 1 [41]
Chianina 8 3 3 4 5 23 [39,40,104,41]
Cinisara 5 1 2 8 [39,40,41]
Frisona italiana 1 3 4 [39]
Grigia Alpina 2 2 [104]
Marchigiana 7 1 8 [104,41]
Maremmana 3 2 5 [39,41]
Modicana 1 1 [39]
Pettiazza 1 1 [39]
Pezzata rossa italiana 1 1 2 [40]; JQ967333
Piemontese 1 1 2 [39]
Podolica 3 1 4 [39,41]
Rendena 1 1 [39]
Romagnola 3 5 6 14 [40,104,41]
Valdostana 1 1 2 [39]
Malta 1 1 2
Maltese 1 1 2 [43]
Northern Africa 18 6 5 2 31
Domiaty 8 3 1 2 14 [41,42]
Menofi 10 3 4 17 [41,42]
Africa 36 36
Nguni 34 34 [152]
Sheko 2 2 [41]
Unknown 1 2 20 2 3 1 29
Hybrid bison/cattle 12 12 [148]
Unknown 1 2 8 2 3 1 17 [153]; DQ124387-DQ124402
Total 1 100 24 81 5 32 3 3 10 4 7 1 18 10 299

In bold: total number of mtDNAs in the specific macroarea. T3*: all T3 mtDNAs that did not cluster within any of the defined subclades.
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The most recent finding based on both prehistoric aurochs and
cattle populations defined a new Balkan-specific T6 haplogroup and
argued the possibility for an independent event of Neolithic cattle
domestication on the South-eastern Balkans followed by a second wave
of parallel dissemination of cattle herds via theMediterranean route [132].

Although the vast majority of modern cattle harbor mitogenomes
belonging to haplogroups T and I, other haplogroups have been
identified (named Q, P and R), all radiating prior to the T node, thus
phylogenetically closer to T than to I (Table 1). Haplogroup P was the
most common haplogroup in European aurochs and has so far been
identified in only two modern cattle [39,133]. Its occurrence in the
modern cattle gene pool is generally explained by rare introgression
events between female European aurochs and domesticated cattle
introduced from the Near East [40]. Haplogroup Q is relatively close to
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haplogroup T sequences and has been suggested to have entered the
cattle mtDNA gene pool during the initial domestication process in the
Near East. In contrast, haplogroup R is phylogenetically very distinct
from P, Q and T and has so far only been found in modern Italian cattle
[104]. As haplogroup P, it most probably represents a remnant of
introgression fromwild aurochs into the early domestic cattle gene pool.

While there is very little doubt that the uncommon haplogroups
P and R are derived from European wild aurochs cows either
because of sporadic interbreeding events (naturally occurring and/or
human-mediated) or possibly, in the case of haplogroup R, as
consequence of a minor event of B. primigenius domestication in Italy
[104], the origin of haplogroup Q is less clear.

With an estimated age of about 48 ky for the QT node, haplogroup Q
is the closest to super-haplogroup T; it was first discovered in a local
Italian breed (Cabannina, two mtDNAs with the same haplotype),
following other fourteen additional Q mitogenomes, but all derived
from Italian breeds (Cabannina, Chianina, Grey Alpine, Italian Red
Pied, and Romagnola) [39,40,104]. Haplogroup Q is found both in
ancient Neolithic and modern cattle [80,104].

A recent phylogenetic analyses conducted on 31 Egyptian
mitogenomes from Nile Delta taurine breeds confirmed the prevalence
of haplogroup T1 in North African cattle, but also showed rather high
frequencies for haplogroups T2 (19.4%), T3 (16.1%) and Q1 (6.5%),
with an unexpected extreme haplotype diversity [42]. Researchers
argued that the Egyptian Q1 mitogenomes are direct local derivatives
from Q1 founder mtDNAs brought to Egypt by the first domestic
herds. In other words, similar to T1, T2 and T3, Q1 was among the
haplogroups involved in domestication in the Near East, from where it
spread along with the others. Recent data on the ancient cattle
population (from Neolithic to Bronze ages) have shown predominate
presence of Q haplogroup up to 50% in Iran (7000–5000 BC) as well as
in South-Eastern Europe (the Balkans, 6200–2200 BC) [100] and in a
Northern Finnish Post-Medieval sample [134]. The new Q1 lineage
found in the Pirenaica extend the geographic distribution of the Q
haplogroup to the south-west of the European continent [135].
Fig. 1. Geographical distribution of the Y haplogroups among
Regarding zebu cattle, mtDNA sequences allowed the identification
of two major haplogroups: I1 and I2. These indicine maternal lineages
diffused from South Asia to Southwest and Central Asia [136,137].
Haplogroups I1 predominated in the cattle that moved eastwards to
Southeast Asia and China. I2 haplogroup is a rare and more ancient
than I1 haplogroup; it was only detected in Yunnan–Guizhou Plateau,
Tibet region and Mongolia [123,138,139].

Chen and colleagues [136] suggested that zebu domestication
involved at least two different wild female populations [140] or,
more likely, a single domestication event in the Indus Valley with
a subsequent introgression process of wild (I2) females into
proto-domesticated herds. Populations with a mixed taurine and
indicine maternal origin are found in Southwest Asia, Central Asia,
China, Mongolian and Brazil [8].

Finally, two haplogroups, termedE and C, have been reported only in
ancient specimens and are probably extinct. Haplogroup, E, was
identified in a 6 ky old aurochs from Germany [80,133], while
haplogroup C was found in a specimen that might represent an early
Holocene attempt to manage cattle in northern China [141].

6.2. The male perspective of the Y chromosome variation

In contrast to mtDNA, which shows the maternal origin and
therefore stays with the herds, Y chromosomal haplotypes are
markers of paternal origin and male introgression.

Generally Y chromosome phylogenetic surveys are few and most
have been focused on taurine and zebuine crosses [53,80,142,143].
Furthermore, lower levels of genetic diversity have been found in the
Y chromosome than in autosomes, probably due to commonly used
breeding schemes of a few selected males that produce a large
number of offspring [81,144]. The identification of five SNPs has
permitted the classification of extant breeds into three Y-chromosome
haplogroups, named Y1, Y2 and Y3 [106] (Fig. 1 and Table 2). Y3
haplogroup was identified only in zebu, while Y1 and Y2 are so far the
two major and well divergent. Y1 was found to be predominant in
the world's cattle breeds (for further details see Table 2).



Table 2
Sources and Y haplogroup distribution for the Bos taurus in the world.

The colours identify the four section maps reported in Fig. 1.
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northern European and in north Spanish breeds, has a low frequency in
Southwest Asian bulls and it is carried by male offspring of recent
European imports [50]. Y2 is prevalent in Central and South Europe,
with a clear dividing zone in central Europe [43,50], and Anatolian and
African taurine bulls. Remains of European aurochs bulls for which their
wild origin was validated via their mtDNA all carried Y2 haplotypes
[105]. Since these cannot yet be differentiated from European or
Southwest Asian Y2 haplotypes, this neither proves nor disproved wild
male introgression. Wild-domestic crossbreeding was suggested by
intermediate sized Neolithic bones found in what is now the Czech
Republic [145]. The Y1 distribution pattern is interpreted as reflecting
later expansion of dairy breeds [50,105,106]. Specific Y2 haplotypes
provides evidence for introgression of African aurochs in domestic herds
[6,124]. An African origin of taurine cattle, in spite of a Southwest Asian
maternal origin, has been confirmed by autosomal SNPs analysis [117].

Overall a north–south gradient of genetic diversity in modern
European cattle has been reported, resulting in an almost complete
fixation of the Y1 type in the contemporary northern cattle breeds
most likely due to recent demographic events [106,134].

Some authors assessed the paternal gene pools of cattle breeds and
the influence of foreign bulls during crossings by microsatellite
markers. A set of five cattle Y-specific microsatellite loci was surveyed
in several cattle breeds reared in different geographical areas [6,50,73]
or local breeds such as Ethiopian cattle [81], Portuguese cattle [72], the
[59] and from Poland [146].

These studies have allowed for refined analyses of the genetic
diversity of paternal lineages, identifying several Y-haplotypes within
major haplogroups. However, with the exception of INRA189 marker,
an overall low diversity of the Y-chromosome markers was observed,
possibly due to either a low mutation rate or selection affecting the
allelic diversity [50,59,72,146].

It has been also shown that particular microsatellite alleles were
either indicus-specific allele, such as INRA189 (88 bp) [76], INRA124
(130 bp) [53,76] and BM861 (156 bp) [60,76], or were found only in a
few individuals from indigenous breeds of different geographical
origin, specifically INRA189 (90 bp), INRA189 (82 bp) [73] and
INRA124 (134 bp) [60].

7. Conclusions

The outcome of combinedmitogenome analyses and Y chromosomal
studies has greatly improved our understanding of the origin of extant
cattle, providing the reconstructing of its evolutionary history.
However, refined comparative analyses with preserved B. primigenius
specimens highlighted the complexity of the cattle domestication
process and left some question unsolved.

Uniparental genetic systems contributed essentially both to themale
and female heritage reconstructions by providing geographic and
historic anchor points for specific breeding and conservation programs.
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